Supervised features selection in MaZda

Michal Strzelecki

Institute of Electronics, Technical University of Lodz, Poland

Why feature reduction?

- it is not known *a priori* which features are best for given texture analysis - one has to consider as many features as possible,
- it is very difficult to manage with almost 300 features generated by **MaZda**,
- large number of features requires large number of data samples (which are not available normally).

2

Automatic feature selection (Fisher, POE+ACC, MI, Optimal subsets)

- it is necessary to define at least two classes (two ROIs wit different names),
- each class must contain at least two samples

Analysis examples:

Feature selection:

- four methods were used to obtain best features
- analysis of feature subsets was performed

Classification (1NN - one nearest neighbor):

- raw data
- data after linear discriminant analysis (LDA)

Experimental Data #1

- 16 textures from Brodatz album, 512x512 pixels
- each image was divided into 64 squares (64x64)
- 1024 samples of 16 texture classes altogether
- for each sample 269 texture features have been calculated using MaZda software (±3σ norm.) (gradient matrix, co-occurrence matrix, RL matrix, wavelet, AR model)

1-NN classification results for

4 features selected using different methods

optimal subset	МІ		Fisher		POE	
raw	raw	LDA	raw	LDA	raw	LDA
0	16	8	79	59	145	147
Number of misclassiedfied samples (total no. of samples: 1024)						

Sigma, MinNorm, GrMean, S(0,2)Correlat 1-NN error: 0

MI: Sigma MinNorm S(1,0)Contrast Perc.10% S(0,1)DifVarnc S(0,2)DifVarno GrMean S(0,2)Correlat S(0,3)Contrast

S(1,0)Correlat

1-NN error: 0

Fisher: S(0,2)DifEntrp S(0,3)DifEntrp S(0,1)DifEntrp (0,2)Contrast Variance S(0,4)DifEntrp

1-NN error: 0

inNorm

S(0,2)DifEntrp Teta4 S(0,5)SumVarno 5,0)SumVarno MaxNorm WavEnHH_s-S(0,2)AngScMon Perc.10%

1-NN error: 26 1-NN error after LDA: 23

Experimental Data #2

- 6 3D textures generated using MRF model, 130x130x130 pixels
- each image was divided into 27 squares (10x10x10)
- 162 samples of 6 texture classes altogether
- for each sample 284 texture features have been calculated using MaZda software (histogram, 3D co-occurrence matrix)

[1.0 ,1.0, 1.0]

[0.4 ,0.4, 0.4]

b3

[0.2 ,0.2, 0.2] [0.1 ,0.1, 0.1]

b4

[0.6, 0.6, 0.6] [0.8, 0.8, 0.8]

Optimal subset with 3 features: S(1,0,0)InvDfMom, S(0,1,0)InvDfMom, S(4,4,0)DifEntrp S(0,1,0)InvDfMor 0.15 1-NN error: 5

Conclusions

- \bullet None of the three feature selection methods was able to select optimal subset of features. However some of them found features with the same classification error.
- Quality of feature selection method depends on classification task (data #1 - MI; data #2 - POE).
- Feature subsets may provide better classifiction than the whole set (in case of Fisher, POE, MI) using 1-NN classifier.

Exercise 1

- Start MaZda or, if it is already started, close all the report tab-pages Load image texture1.bmp from Tutorials\3a_Texture_analysis_1 folder
- Switch to the overlapping mode and create 16 regions of interest of an approximate size 35x35 pixels (observe the status bar for a size information) with *Draw rectangle* tool

 Set analysis options and run the analysis

- In a Report window set class name Biology for all the columns
 Load image texture2.bmp from Tutorials\3a_Texture_analysis_1 folder
- Run the analysis (use the same regions and analysis options as previously)
 In a Report window set class name *Mineral* for all the columns of the second tab-page
 Find features that may be useful for discrimination of the two classes

Exercise 1 (continued)

- Perform automatic feature selection with Fisher criterion using Feature selection->Fisher
- Save selected features to a file fisher.sel using File->Save selected
- Run b11 using Tools->B11 analysis
- Observe b11 options window selecting Options
- Select only three top features in Feature selection box
- Observe feature distribution using Analysis->Raw data
- Perform PCA and LDA analysis and observe feature distribution in the new data space