

Piotr M. Szczypiński

Modele deformowalne do ilościowej analizy i rozpoznawania obiektów w obrazach cyfrowych

Promotor: prof. dr hab. Andrzej Materka

Cel pracy

- Opracowanie efektywnych metod analizy obrazów z wykorzystaniem deformowalnych modeli,
- Porównanie tradycyjnych metod analizy obrazów i metod wykorzystujących deformowalne modele.

Tezy pracy

- Modele deformowalne pozwalają na prawidłowe rozpoznawanie obiektów zniekształconych oraz na określanie stopnia tego zniekształcenia,
- Modele deformowalne stosowane do śledzenia poruszających się obiektów przedstawionych w sekwencji obrazów cyfrowych pozwalają na określanie ich położenia, orientacji i odległości od obserwatora,
- Rozpoznawanie i określanie położenia obiektów w obrazie cyfrowym za pomocą modeli deformowalnych, przy użyciu procesorów sekwencyjnych wymaga krótszego czasu przetwarzania w porównaniu do metod tradycyjnych.

Metody badawcze

Analiza matematyczna,

- Symulacja komputerowa,
- Weryfikacja eksperymentalna.

Narzędzia badawcze

- Programy analizy obrazów metodami tradycyjnymi:
 - komercyjne,
 - opracowane samodzielnie,
- Siatki program analizy obrazów za pomocą modeli deformowalnych.

Pochodzenie badanych obrazów

- Obrazy ultrasonograficzne serca CZMP w Łodzi, dr E. Makowiecka,
- Obrazy rentgenowskie ziaren Instytutu Agrofizyki PAN w Lublinie, dr J. Niewczas, projekt badawczy 5P06F01209
 "Fizyczne i biologiczne skutki suszenia mikrofalowego ziaren pszenicy",
- Obrazy MRI serca Aarhus University Hospital, dr H. Stødkilde-Jørgensen, program badawczy EC COST B11 "Quantitation of Magnetic Resonance Image Texture",
- Serie obrazów przedstawiających rzeczywiste obiekty w ruchu – *Encyklopedia Multimendialna PWN* - "*Historia*", Wydawnictwa Naukowe PWN S.A., Warszawa 1999,
- Obrazy utworzone sztucznie.

Przykłady analizowanych obrazów

Tradycyjne metody analizy obrazów

- Przetwarzanie wstępne,
 - usuwanie zakłóceń,
- Segmentacja
 - progowanie jasności obrazu,
 - przekształcenia gradientowe,
 - przekształcenia morfologiczne,
 - aproksymacja konturu równaniem krzywej,
- Określanie cech obiektów
 - korelacja obrazu i maski wzorca,
 - obliczanie cech geometrycznych obiektu,
- Klasyfikacja.

Wady tradycyjnych metod analizy obrazów

Wieloetapowość analizy,

- Strata części istotnych informacji w poszczególnych etapach,
- Długi czas analizy.

Deformowalne modele w analizie obrazów cyfrowych

- Deformowalna krzywa (aktywny kontur):
 wyznaczanie konturu obiektu,
 - M. Kass, A. Witkin, D. Terauzopoulos, *Snakes: Active Contour Models*, 1988
 - W. Neuenschwander, P. Fua, O. Kuebler, From Ziplock Snakes to Velcro Surfaces, 1995
- Deformowalny wzorzec (siatka):
 - rozpoznawanie obiektu
 - określanie stopnia zniekształcenia obiektu.
 - L. Wiskott, J-M. Fellous, N. Kruger, C. Malsburg, Face Recognition by Elastic Bunch Graph Matching, 1997
 - X. Wu, B. Bhanu, Gabor Wavelet Representation for 3-D Object Recognition, 1997

Idea aktywnego konturu

- Budowa aktywnego konturu,
- Oddziaływanie obrazu na strukturę,
- Modelowanie sprężystości krzywej.

Przykład dopasowania aktywnego konturu

Równania opisujące aktywny kontur $E_{s} = \int_{a}^{s_{m}} \left[E_{i}(\mathbf{v}(s)) + E_{e}(\mathbf{v}(s)) + E_{p}(\mathbf{v}(s)) \right] ds$

$$E_i(\mathbf{v}(s)) = \tau \left| \frac{d\mathbf{v}(s)}{ds} \right|^2 + \rho \left| \frac{d^2 \mathbf{v}(s)}{ds^2} \right|^2$$

 $\mathbf{F}(s) = -\nabla E_s(s)$

$$m\frac{\partial^2 \mathbf{v}(s,t)}{\partial t^2} + l\frac{\partial \mathbf{v}(s,t)}{\partial t} = \mathbf{F}(s,t)$$

- Wewnętrzne naprężenia krzywej konturu,
- Składowa oddziaływania obrazu,
- Dodatkowa składowa oddziaływań zewnętrznych,
- Równanie ruchu punktów węzłowych.

ldea deformowalnego wzorca (siatki)

- Budowa siatki,
- Zapis cech obrazu wzorcowego w punktach węzłowych,

Proces dopasowania modelu do obiektu.

Przykład dopasowania deformowalnego wzorca

Energia deformowalnego wzorca $E_{S} = \iint_{\Omega} \left[E_{i} (\mathbf{v}(\mathbf{s})) + E_{e} (\mathbf{v}(\mathbf{s})) + E_{p} (\mathbf{v}(\mathbf{s})) \right] d\mathbf{s}$

- Modelowanie wewnętrznych naprężeń,
- Oddziaływanie obrazu na siatkę,
- Dopasowanie siatki do obiektu.

$$E_{i} = \tau \left[\left| \frac{\partial \mathbf{v}}{\partial i} \right|^{2} + \left| \frac{\partial \mathbf{v}}{\partial j} \right|^{2} \right] + \rho \left[\left| \frac{\partial^{2} \mathbf{v}}{\partial i^{2}} \right|^{2} + 2 \left| \frac{\partial^{2} \mathbf{v}}{\partial i \partial j} \right|^{2} + \left| \frac{\partial^{2} \mathbf{v}}{\partial j^{2}} \right|^{2} \right]$$

 Problem z modelowaniem naprężeń dla punktów węzłowych na brzegu siatki

Modyfikacje modelu aktywnego konturu

Model z punktem środkowym

Oddziaływania sił obrazu

Gradient jasności obrazu Progowanie jasności

Przykłady dopasowania zmodyfikowanych modeli aktywnego konturu

Model ciśnieniowy (*balonowy*)

Model z punktem środkowym

Siatka trójkątna

punkt węzłowy

trójkąt równoboczny

$$\mathbf{f} = \begin{bmatrix} \frac{x_b + x_c + \sqrt{3}(y_c + y_b)}{2} - x_a \\ \frac{y_b + y_c + \sqrt{3}(x_b + x_c)}{2} - y_a \end{bmatrix}$$

Siatka o ograniczonej elastyczności

Ograniczenie "deformacji" siatki do jej:

przesuwania

$$\mathbf{D}(t) = \mathbf{D}(t-1) + \frac{d}{card\Omega} \sum_{(i,j)\in\Omega} \mathbf{F}_p(i,j,t-1)$$

$$\bullet \text{ rozciągania}$$

$$R(t) = R(t-1) \left(\frac{\sum_{(i,j)\in\Omega} \mathbf{F}_p(i,j,t-1) \left(\mathbf{v}(i,j,t-1) - \mathbf{D}(t-1) \right)}{\sum_{(i,j)\in\Omega} \left| \mathbf{v}(i,j,t-1) - \mathbf{D}(t-1) \right|} \right)$$

obrotu

$$\alpha(t) = \alpha(t-1) + \alpha \frac{\sum_{(i,j)\in\Omega} \mathbf{F}_p(i,j,t-1) \begin{bmatrix} -1_y (\mathbf{v}(i,j,t-1) - \mathbf{D}(t-1)) \\ 1_x (\mathbf{v}(i,j,t-1) - \mathbf{D}(t-1)) \end{bmatrix}}{\sum_{(i,j)\in\Omega} |\mathbf{v}(i,j,t-1) - \mathbf{D}(t-1)|}$$

Sekwencyjne użycie modeli

- Przyspieszenie procesu dopasowania,
- Dokładność dopasowania do obiektu.

Oryginalne osiągnięcia

- Modyfikacja funkcji oddziaływania obrazu,
- Nowe modele aktywnego konturu:
 - model z punktem środkowym,
 - zmodyfikowany model ciśnieniowy,
- Oryginalna metoda obliczania naprężeń w siatce deformowalnego wzorca,
- metoda dopasowania siatki o trójkątnej strukturze połączeń,
- Siatka o ograniczonej elastyczności,
- Sekwencyjne zastosowanie:
 - modelu o ograniczonej elastyczności,
 - modelu w pełni deformowalnego.

Zastosowanie aktywnego konturu (1)

(a) (b)

 Wyznaczanie obrysu lewej komory serca na obrazach ultrasonograficznych.
 Porównanie wyników uzyskanych za pomocą aktywnego konturu (a) i obrysów zaznaczonych przez kardiologa (b).

Zastosowanie aktywnego konturu (2)

 Wyznaczanie obrysu lewej komory serca na obrazach MRI (pokazano wybrane przekroje serca w tej samej fazie pracy).

Wyznaczanie konturu, bruzdki i położenia zarodka ziarna pszenicy

Dopasowanie siatki i aktywnego konturu do uszkodzonego obiektu

Śledzenie poruszających się obiektów

Odporność metod analizy obrazów na dodane zakłócenia losowe

Odporność metod analizy obrazów na dodane zakłócenia losowe

Odporność metod analizy obrazów na dodane zakłócenia losowe

Odchylenie standardowe zakłóceń losowych

Stopień rozróżnienia obiektów należących do różnych klas

Współczynniki deformacji siatki prostokątnej

Stopień rozróżnienia obiektów należących do różnych klas

Współczynniki deformacji siatki prostokątnej

Stopień rozróżnienia obiektów należących do różnych klas

Współczynnik Fishera rozdzielenia klas

	wspołczynniki deformacji	maksimum funkcji korelacji		
	deformowalnego wzorca	i minimum funkcji sumy kwadratów		
		różnic jasności punktów obrazu i		
		maski wzorca		
rozpoznawanie rzutu ziarna	14.8	12.8		
rozpoznawanie orientacji ziarna	7.1	4.9		

Czas wymagany do wykonania analizy obrazu

Rodzaj analizy	Czas wykonania analizy [ms]		
	Pentium 120MHz	Celeron 400MHz	
Aktywny kontur z punktem środkowym	$6.8 - 14.7^{*}$	$1.9 - 3.9^*$	
Aktywny kontur standardowy	$9.5 - 17.3^{*}$	$2.8 - 4.5^*$	
Wyznaczanie konturu przez progowanie	12	5	
Wyznaczanie konturu przez progowanie	42	9	
wraz z zamknięciem morfologicznym			
Wyznaczanie konturu przez progowanie	65	12	
wraz z zamknięciem i otwarciem			
Deformowalny wzorzec z siatką trójkątną	1025	210	
Deformowalny wzorzec z siatką prostokątną	876	180	
Wyznaczanie maksimum funkcji korelacji	53560	8840	
Wyznaczanie maksimum funkcji korelacji i	64480	9880	
minimum funkcji sumy różnicy kwadratów			
[*] czas analizy zależy od wyzerowania lub nie parametru ζ_2 modelu			

Zastosowania deformowalnych modeli

Diagnostyka medyczna:

- analiza obrazów ultrasonograficznych serca,
- analiza obrazów serca z tomografu MRI,
- Analiza obrazów rentgenowskich ziaren pszenicy:
 - rozpoznawanie rzutu i orientacji obiektu,
 - wyznaczanie obrysu (segmentacja),
 - przybliżone wyznaczanie bruzdki i zarodka,
- Śledzenie poruszających się obiektów w sekwencji obrazów cyfrowych.

Podsumowanie

- Opracowano metody analizy obrazów za pomocą modeli deformowalnych umożliwiające:
 - segmentację, określanie położenia, orientacji, stopnia zniekształcenia i klasyfikację obiektów (teza 1),
 - śledzenie poruszających się obiektów, określania ich położenia, orientacji i odległości od obserwatora (teza 2),
- Wykazano, że analiza obrazów z wybranej klasy za pomocą deformowalnych modeli jest szybsza od analizy za pomocą metod tradycyjnych (teza 3),
- Wykazano praktyczną użyteczność deformowalnych modeli,
- Opracowano założenia implementacji modeli deformowalnych w cyfrowym układzie elektronicznym.

Publikacje (1)

- 1. P. Strumiłło, **P. Szczypiński**, *Automatic Extraction of Fuzzy and Broaken Image* Edges using Active Contour Model, XVIII KKTOiUE, 1995
- 2. P. Szczypiński, P. Strumiłło, Application of an Active Contour Model for Extraction

of Fuzzy and Broken Image Edges, Machine GRAPHICS & VISION, Vol.5, No.4, 1996, pp. 579-594

- 3. P. Strumiłło, **P. Szczypiński**, P. Makowski, *Dokumentacja skomputeryzowanego stanowiska badawczego do analizy obrazów rentgenowskich ziaren pszenicy*, Instytut Elektroniki, Politechnika Łódzka, 1996
- 4. P. Strumiłło, **P. Szczypiński**, P. Makowski, J. Niewczas, *Program do Komputerowej Analizy Obrazów Rentgenowskich Ziaren Pszenicy*, WEE PŁ Elektronika-Prace naukowe, Łódź 1997, Zeszyt nr 2, pp.101-111
- 5. **P. Szczypiński**, A. Materka, *Variable-Flexibility Elastic Model for Digital Image Analysis*, XXI KKTOiUE, Kiekrz, 1998 (wyróżnienie)
- P. Strumiłło, J. Niewczas, P. Szczypiński, P. Makowski, W. Woźniak, *Computer System for Analysis of X-Ray Images of Wheat Grains*, Int. Agrophysics, 1999, 13, pp. 133-140

Publikacje (2)

- 7. **P. Szczypiński**, A. Materka, *Variable-Flexibility Elastic Model for Digital Image Analysis*, XXI KKTOiUE, Kiekrz, 1998
- 8. **P. Szczypiński**, A. Materka, *Variable-Flexibility Elastic Model for Digital Image Analysis, Bulletin of the Polish Academy of Sciences*, Technical Sciences, Vol.47, No.3, 1999, pp. 263-269
- 9. **P. Szczypiński**, A. Materka, *Program do analizy obrazów za pomocą deformowalnych modeli*, Elektronika-Prace naukowe, Łódź 2000, Zeszyt nr 5, pp.33-51
- 10. M. Kociołek, A. Materka, M. Strzelecki, P. Szczypiński, Badanie wpływu liczby poziomów jasności obrazu na zdolność dyskryminacji tekstur przy użyciu macierzy zdarzeń, Elektronika-Prace naukowe, Łódź 2000, Zeszyt nr 5, pp.21-33
- 11. P. Szczypiński, A. Materka, Object Tracking and Recognition Using Deformable Grid with Geometrical Templates, International Conference on Signals and Electronic Systems, Ustroń-Poland 2000, pp.169-174
- 12. M. Kociołek, A. Materka, M. Strzelecki, P. Szczypiński, Investigation of Wordlength Effect on Discriminative Power of Co-occurrence Matrix – Derived Features for Digital Image Texture Analysis, International Conference on Signals and Electronic Systems, Ustroń-Poland 2000, pp.163-168

Udział w projektach badawczych (związanych z tematyką pracy)

✓ KBN 5P06F01209

– Fizyczne i biologiczne skutki suszenia mikrofalowego ziaren pszenicy

COST B11

- Quantitation of Magnetic Resonance Image Texture

✓ KBN 8T11C02017

 Identyfikacja obiektów w obrazach cyfrowych z zastosowaniem elastycznego modelu