

Technical University of Lodz Institute of Electronics

Computer vision quality assessment of barley kernels

Izabella Korczyńska¹, Aleksandra Jarosik¹, Piotr M. Szczypiński¹, Piotr Zapotoczny²

¹ Institute of Electronics, Lodz University of Technology ² Department of Agri-Food Process Engineering, University of Warmia and Mazury in Olsztyn

EFITA/WCCA/CIGR Conference, Poznań 2015

Supported by the National Centre for Research and Development in Poland, grant no. PBS3/A8/38/2015

Visual Inspection and Computer Vision

- Visual inspection is one of the oldest and reliable food quality assessment methods. However, in industrial environment it is labor-expensive.
- 2) With the development of computer vision algorithms the human-expert can be assisted or replaced by an automatic expert systems.
- 3) Coherent and optimal methodology for developing such systems is not yet established. Nevertheless each case can be solved individually using unique, tailored algorithms.

Quality expectations

In the brewing industry, crucial for the production of high quality malt is:

- kernel uniformity,
- existence of germ in every kernel,
- lack of mechanical defects and
- lack of fungal infections

Scope of the Presentation

Goal and motivation

Methods

- Material
- Image segmentation
- Feature extraction
- Machine learning
- Data classification
- Cross-validation

Results

Classification performance
Conclusions

Goal and motivation

Photo: Dan DeLong/Seattle Post-Intelligencer

Economic

- Inspect more
- Make inspection quick
- Simplify training

Technical

- Find reliable method
- Improve reproducibility

Material

Images acquired with flatbed scanner.

Samples of labeled kernels from malt house – Soufflet Agro Polska.

Classes:

- Good for malting
- Undeveloped
- Cracked
- Sprouted
- Swollen
- Missing germ
- Fusarium infected
- Other fungal infections

Fusarium infected

Image segmentation

Image segmentation is to partition an image into regions of interest suitable for further analysis. Here, the regions may represent individual kernels.

Our approach:

- Grey-level thresholding
- Median filtering
- Identifying disjoint areas

Feature extraction

Every kernel is characterized by numerical variables – features.

Such features quantitatively describe shape, texture and color.

Every kernel described by a vector of several-hundred features can be viewed as a coordinate in a severalhundred-dimensional space.

Machine learning

Machine learning explores algorithms that from example inputs create data-driven prediction models or decisions rules.

Linear discriminant analysis is a method to find a linear combination of features that separates two or more classes of objects.

The resulting combination is used as a **linear classifier**, in which a decision boundary is simply a line (2D), plane (3D) or hyperplane.

Data classification

Classification is a process of identifying to which category (class) a new observation (kernel) belongs.

Linear **classifier ensembles** are applied to deal with multi-category identification.

Cross-validation

Cross-validation is a technique for estimating the performance of a classifier. It involves partitioning data (set of feature vectors) into subsets, performing machine learning on one subset and validating the classifier on the other one.

In this study the three-fold cross-validation was applied:

- vector sets were randomly divided into three possibly equinumerous subsets
- two subsets were used for training and remaining one for validation
- the process was repeated for each of the three subsets used for validation

Sensitivity and specificity

Sensitivity and specificity are statistical measures of the performance of a binary classification test [wikipedia].

 $sensitivity = \frac{number of true \ positives}{number of true \ positives + number of false \ negatives}$ $specificity = \frac{number \ of \ true \ negatives}{number \ of \ true \ negatives + number \ of \ false \ positives}$

Methods

Which side is better?

Missing germ	Good for malting	Ventral	
28	5	Missing germ	Sensitivity: 0.93
2	30	Good for malting	Specificity: 0.86

Missing germ	Good for malting	Dorsal	
30	1	Missing germ	Sensitivity: 1.00
0	34	Good for malting	Specificity: 0.97

Linear classifier performance

Missing germ	Good for malting	Ventral	
30	1	Missing germ	Sensitivity: 1.00
0	34	Good for malting	Specificity: 0.97
Fusarium	Good for malting	Ventral	
40	4	Fusarium	Sensitivity: 0.95
2	31	Good for malting	Specificity: 0.89

Fungal infection	Good for malting	Dorsal	
52	6	Fungal infection	Sensitivity: 0.96
2	29	Good for malting	Specificity: 0.83

Classifier ensemble performance

Swollen	Fusarium	Fungal inf.	Mis. germ	Good	Dorsal
18	1	1	3	4	Swollen
0	34	1	1	0	Fusarium
2	0	42	0	8	Fungal inf.
1	0	0	25	0	Mis. germ
3	0	3	0	17	Good
6	7	7	1	6	Unassigned

Swollen	Fusarium	Fungal inf.	Mis. germ	Good	Ventral
17	0	1	0	2	Swollen
0	35	0	1	1	Fusarium
4	1	46	3	1	Fungal inf.
0	0	1	21	2	Mis. germ
5	4	1	0	21	Good
4	2	5	5	8	Unassigned

Conclusions

- Computer vision methods can identify barley kernels suitable or unsuitable for malting.
- Combination of image segmentation, feature extraction and machine learning methods does the job.
- Accuracy of classification (the average of sensitivity and specificity) ranges from 0.88 to 0.98 for linear classifiers and reaches 0.72 for classifier ensembles.
- Analysis of dorsal or ventral side of kernels has impact on classification results.

