









































W http://en.wkipedia.org/wki/Pourier_transform	▼ → X Google	م
Edycja <u>Widok Ulubione N</u> arzędzia Pomo <u>c</u>		
W Fourier transform - Wikipedia, the free encyclopedia	💁 + 🔝 + 👼 + 🕞 Strona -	• 🔘 Norządzia •
An integrable function is a function j on the real line that i $\int_{-\infty}^{\infty} f(x) dx < \infty.$: Lebesgue-measurable and satisfies	
Basic properties		[edit]
Given integrable functions $f(x)$, $g(x)$, and $h(x)$ denote their F transform has the following basic properties (Pinsky 2002)	ourier transforms by $\hat{f}(\xi)$. $\hat{g}(\xi)$, and $\hat{h}(\xi)$ respectively. Th	e Fourier
Linearity		
For any complex numbers a and b, if $h(x) = af(x) + bg$	(x), then $\hat{h}(\xi) = a \cdot \hat{f}(\xi) + b \cdot \hat{g}(\xi)$.	
Translation For any real number x_n , if $h(x) = f(x - x_n)$, then $\hat{h}(\xi)$	-2=inof û/ a	
For any real number x_0 , if $h(x) = f(x - x_0)$, then $h(\xi)$ Modulation	$=e^{-2\pi i k \xi} f(\xi).$	
For any real number ξ_h , if $h(x) = e^{2\pi i x \xi_0} f(x)$, then $\hat{I}_h(\xi_0)$	$-\hat{f}(\mathcal{E} - \mathcal{E}_{-})$	
Scaling	$f = f(\zeta - \zeta_0)$	
For all non-zero real numbers a , if $h(x) = f(ax)$, then \hat{h}	$(\xi) = \frac{1}{ a } \hat{f}\left(\frac{\xi}{a}\right)$. The case a = -1 leads to the time-	-reversal
property, which states: if $h(x) = f(-x)$, then $\hat{h}(\xi) =$		
Conjugation		
If $h(x) = \overline{f(x)}$, then $\hat{h}(\xi) = \hat{f}(-\xi)$.		
Convolution	***	
If $h(x) = (f * g)(x)$, then $\hat{h}(\xi) = \hat{f}(\xi)$.	η(ξ).	
Uniform continuity and the Riemann-Lebes	gue lemma	[edit]
	I properties that do not always hold. The Fourier transform of	
	1 (Katznelson 1976). The Fourier transform of integrable funct	tions also
satisfy the Riemann-Lebesgue lemma which states that (S	tein & Weiss 19/1)	

































































































