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Abstract-Two approaches to Hessian-based estimation of 

tubular blood-vessel radius from 3D raster images are compared. 

In the proposed approach, binary skeleton is found for each 

tubular vessel-tree branch by thresholding the Hessian-derived 

vesselness image. Coordinates of the binary skeleton are 

approximated with smooth 3D spline funetions. Their derivatives 

with respect to arc length give local tangent vectors, and thus 

planes normal to the vessel centerline. A proposed image 

intensity profile model is then least-squares fitted to the vessel 

eross-section by those planes, at each skeleton point. The cireular 

vessel local radius is one of the model parameters. In the 

reference method, the vessel centerline direetion is defined by the 

local Hessian eigenvector corresponding to the smallest 

eigenvalue. The radius is estimated using a square root of the 

vessel cross-section area (as obtained by an adaptive 

thresholding), divided by n. The impact of Frangi Hessian filter 

parameters and scale selection on the methods' performance is 

examined. Higher accuraey, preeision and robustness to image 

noise and artifacts is demonstrated for the proposed method. 

Example of the method suitability for modeling of brain 

vasculature magnetic resonance images is also presented in this 
paper. 

Keywords-3D vascularity image analysis, vessel tree modeling, 
radius-centerline representation 

I. INTRODUCTION 

Mathematical modeling of the human vascular system is 
one of the important tasks in biomedical engineering. The 
models provide quantitative information for vessels shape, 
allow simulation of blood flow and tissue perfusion, and are 
essential for personalized diagnosis or surgery. The basis for 
this modeling are three-dimensional images - magnetic 
resonance angiography (MRA) or computed tomography (CT) 
mainly. 

The human vessel trees have a form of connected branches 
of different diameters. To a first approximation their cross­
sections are close to circular and the diameter can be 
considered large (tens of mm for some arteries), medium (one 
or few mm) and small (tens of micrometers for capillaries) [1]. 
The best-resolution contemporary whole-body MR scanners 
provide good quality images with the voxel edge of about 0.5 
mm. As a consequence, the small-diameter branches (thinner 
than the voxel edge) cannot be modelled as pipes of defined 
geometry, since a number of such vessels may pass through 
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a voxel. A network of such thin branches may contribute to the 
texture of corresponding image region, and quantitative texture 
analysis can be used to characterize them for medical diagnosis 
[2]. Therefore, to build a complete model of the human 
vasculature, one has to combine different approaches, best 
describing regions filled with branches of different diameter 
and topology [3,4]. This paper is aimed at development of an 
automated method of geometric modeling of relatively thick 
vascular branches, whose diameter is larger than the length of 
voxel edge. 

In general, there are two approaches to surface modeling of 
blood vessel branches. One is based on image segmentation, 
e.g. with the use of level sets and marching cubes [5]. It is 
computationally time consuming, moreover it is difficult to use 
it for automated model building. The other, considered in this 
paper, is based on tracking the vessels centerline and on 
modeling their cross-sections afterwards, as reviewed in [6] 
and recently expanded in [7]. The high accuracy and robustness 
to noise and artifacts of the proposed vessel modeling 
algorithm is demonstrated with the use of computer-simulated 
and real-world brain-vasculature MR images. Although the 
circular cross-section geometry branches are considered, the 
method is applicable to other shapes, e.g. elliptical and even 
triangular as in the case of the superior sagittal sinus vein. 

A. Materials 

II. MATERIALS AND METHODS 

To evaluate accuracy of the radius estimation algorithm and 
the effects of noise and artifacts, a set of digital-phantoms -
computer-synthesized isotropic-voxel 3D test images - has 
been created: straight tubes with random orientation and 
different diameter (1.0, 1.5, 2.5) and a helical shaped tubes 
with variable radius. The straight tube vessel models had 
a fixed length of 80a, where a is the voxel edge length. They 
were placed inside a 100xlOOxlOO voxel cube at randomly 
selected polar and azimuthal angles, respectively e and <p [8]. 
The synthesized image voxel intensity was proportional to the 
volume of (partial) intersection of a voxel with the tube model, 
scaled to the range [0,125] [2]. 

To account for image noise, pseudo-random numbers of 
Gaussian probability distribution were added to the voxel 
intensities of the tube image, with zero mean and selected 



standard deviation of 0, 10, 20 or 30. Three kinds of image 
artifacts were simulated - an intensity jump of 30, intensity 
linear ramp (from 200 to 300) and linearly varying contrast 
(from 0.7 to 1.3). The intensity of resulting images took its 
values in the range [0,650]. Example images of this type are 
illustrated in Fig. 1. 

b) 

Figure 1. Synthesized image of unity-radius tubular object at ()=54.rand 
<p=62.0°, with superimposed intensity jump and linear variation (noise standard 
deviation = 20): a) maximum intensity projection (MIP) on Oyz plane, b) 
surface plot of the maximum intensity projection. 

Surface that encapsulates a helical shaped model is 
generated based on helix parametric equation. Radius of a tube, 
corresponding to surfuce of a vessel, varies along the center 
according to (1) where xo, Yo, Zo are the helix center co­
ordinates, RL is the loop radius, r is the initial tube radius, and 
c is a constant. Vertical separation of the loops is 67[. Example 
synthesized noisy image of a helical object is shown in Fig. 2. 

x = Xo + [RL + r(l + cp) cos(q)] cos(p) 
Y = Yo + [RL + r(I + cp)cos(q)]sin(p) 
z = Zo +r(I+cp)sin(q)+2p 
q E [O,2l!'], P E [O,3l!'] 

(1) 

The QSM brain MR images were measured for seven 
healthy subjects (approved by the ethical committee of 
Friedrich Schiller University in lena, Germany) with a flow 
compensated 3D single-echo gradient-echo sequence 
(TE/TRIFAIBW = 1O.5msI17ms/8°1140Hz/px, voxel size = 

(0.4x0.4x0.4)mm3 on a 7 T MRI system. The scans were 
carried out with three different orientations of the subject's 
head with respect to the magnetic field to implement the 
COSMOS approach [9], further co-registered. Phase aliasing 
was resolved by 3D phase unwrapping and background phase 
contributions were eliminated with the SHARP technique 
[10]. A MIP visualization of a fragment of one of the QSM 
images of this study is presented in Fig. 3. 
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Figure 2. Synthesized image of a helix (r=l, c=O.2, noise standard deviation 
equals 20): a) 50th cross-section, b) 3D model of the tube. 

Figure 3. An example MIP of the brain QSM image. 

B. Methods 

In the first step of our algorithm, binary centerlines of 
tubular object regions are automatically computed. For this 
purpose, a multi-scale Hessian-based vessel filter [11] is 
applied to the image. In effect, tubular shapes in images are 
enhanced through Hessian eigenvalue analysis. In our method 
the centerlines are initialized as binary skeletons of thresholded 
vessel ness images. To account for varying vessel diameter 
along its centerline, a number of filtered images are computed, 
each for different value of a, the underlying Gaussian kernel 
[12]. The scale coefficient a has to be matched to the diameter 
of tubular objects. Accordingly, the thin vessel regions are 
enhanced by a kernel with small-scale and regions of thicker 
vessels by kernels with higher scale values. The maximum of 
different-a filtered intensity images found for each voxel is 
taken as the vessel ness filter output (VEF). 

It has been observed [13] that the vesselness filter should be 
adjusted to the tubular objects structure by weighting the 
different-a responses prior to finding the maximum across the 
scales. The simplest weighting method suggested in [11,12] 
relies on multiplying the Hessian matrix by a scale-dependent 
coefficient aY where y is a constant. We have carried out 
a number of experiments in which images of single tubular 
objects as well as of separate objects with parallel centerlines 



closely positioned to each other (not shown in this paper) were 
filtered using different values of y. It was found that y=2 
(recommended in the literature [e.g. 12,13,14] as providing 
equal filter responses for different scales) leads to vessel 
blurring with resulting displacement and disappearance of 
some skeleton lines. Choosing ISyS1.5 enhances the small­
scale responses giving representative skeletons as will be 
shown later. 

Hessian-derived vesselness images are thresholded and then 
skeletons are found of the resulting binary images with the use 
of an ITK-based, home-compiled vKnife software. Next, in the 
second step of the algorithm, all n-furcations of the binary 
skeleton are detected and the skeleton is split into M non­
furcating segments. Each of those segments is supposed to 
represent a part of a tubular object (a branch of the blood vessel 
system). Sufficiently long skeletal objects are preserved, 
containing more than few voxels each, to maintain 
representation of elongated tubular structures. 

Consider an m-th branch {v }  = {v v v }  of the m ml' m2"'" mKm 
skeleton, m=I,2, . . .  M, where Km is the number of voxels in it. 
To simplifY notation, one can neglect the branch index 
{v} = {vm}, K=Km, and write 

(2) 

where Vk = (XpYk,Zk) ' k=1,2, ... K, denote coordinates of the 

consecutive voxels of the considered skeleton branch. For each 
point, an arc length h of the branch (since its beginning at k=1) 
can be approximated as 

where 11=0. In the third step of the algorithm, the coordinates of 
the binary skeleton segment of each tube are approximated by 
continuous function s Jx(l), jy(l), Jz(l). These functions are found 
using spline approximation to the respective three sets {xk,h}, 
{yk,h}, {zk,h}. In the fourth step, the derivatives of these 
functions with respect to the parameter I 

dfx t =­x dl' 
dfy 

t =­
Y dl' 

(4) dfz t =-z dl 

can be computed for each k=1,2, ... ,K. They approximate 
components of the tangent vector tk=(txk,tyk,tzk) to the skeletal 
line. In the fifth step of the algorithm, a normal (vessel cross­
section) plane 1[k to the tk vector is found at each skeletal point 
of each of the skeleton segments - e.g. through appropriate 
quaternion [15] calculations. Local orientation of the centerline 
is used to define the normal plane at each centerline point. 

In the sixth step of the proposed algorithm, the image 
intensity profile function inside the vessel region is used to 
model the actual image intensity at the distance d from a tube 
centerline, in N angular directions on this plane (see Fig. 4 for 
N=8). The following smooth model is used in our study 

d-R 
u(d; Va' L1v,R, w) = Va +L1verfo(--) 

w 
(5) 
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where eifc(.) is the complementary error function and Vo 
(intensity of the surrounding tissue), L1v (intensity increase 
inside the vessel, above Vo), IV (variable related to the width of 
the intensity transition from vessel to background), and R (the 
vessel radius) are the parameters. The parameter IV accounts 
for the extent of object edge blurring and is related to the 
imaging system point spread function (PSF). One can show 
that in the case of simulated 3D images where the PSF 
represents the effect of voxel partial volume, the average value 
of parameter IV (accounting for all possible edge directions with 
respect to voxel walls) can be set to 0.437. A more detailed 
description of the derivation of this value, as well as theoretical 
foundation of the usage of complementary error function for 
modeling the edge blur is given in [16]. To account for the 
actual PSF of the imaging system, the value of IV in (5) has to 
be independently identified from a selected edge on. 

Figure 4. Cross-section profile lines defined on the normal plane (N�8). 

In the seventh step of the algorithm, the model (5) is fitted 
to actual image intensity along the normal-plane profile lines 
by minimizing the following error function in the (Vo, L1v, R) 
parameter space 

N Q 
e(Va' L1v, R) = L 2)v(dnJ - u(dn;; Va' L1v, R)]2 (6) 

n=l i=l 
where u( .) is given by (5) and Q is the number of points 
considered along each profile line direction. The image 
intensity values on the normal plane are obtained via 3D 
interpolation. The square root of error (6) divided by NQ is the 
fitting rms error at skeleton point k, denoted by eN. Similarly, 
eQ (a square root of the inner sum in (6) divided by Q) is the 
rms fitting error for the n-th profile. The least-squares error (6) 
minimization is done numerically (and can easily be 
parallelized). The resulting values of local vessel radius Rk at 
each skeleton point, along with the spline-approximated 
centerline points are used for tubular object surface modeling. 

The performance of the proposed radius estimation 
algorithm is compared to the one recently presented in [7] 
where the normalized Hessian eigenvector corresponding to the 
smallest-magnitude eigenvalue is used to estimate the local 
centerline direction and then the vessel cross-section by a plane 
normal to this eigenvector. In the reference method, the radius 
at centerline point k is estimated by 



R;ef = f]i (7) 

where Ak is the area occupied by the tubular object after 
thresholding. The threshold value in our project was equal to 
the average of image intensity in a small neighborhood of the 
cross-section center and the average intensity of a circle with 
a radius sufficiently larger than the expected vessel radius. 

III. RESULTS 

A. Selection of vesselness filter parameters 

First, the influence of the normalization parameter y on the 
Hessian-based image filter response was investigated. Some of 
the results are shown in Fig. 5. Each of the three diagrams 
shows plots of the vesselness filter response [11,12,13,14] to 
a circular object of fixed radius (R=1.5), with the centerline 
parallel to the Oz axis, crossing the Oxy plane at x=50, y=50. 

1.0----"==---

VEF 

0.5 

0.0,�L----...l:>..... '" 50 55 4S Position, x 
50 55 4S Position, x 

V=2.0 

50 55 Position, x 

Figure 5. The relative vessel ness filter responses to a tube of radius 1.5 for 
Hessian multiplied by cr'; y=1.0 (left), 1.5 (middle), 2.0 (right) 

As it is demonstrated in Fig. 5, the relative single-scale 
responses depend on the value of y. When selecting the scale 
cr of the filter, the width of filtered object must be considered. 
If the width of a tube is much greater than cr, tube's edges are 
enhanced which may lead to division of the tube region. Then, 
larger scale filters (giving larger maximum response) should be 
considered to prevent such region split. For greater values of cr, 
the tube region is blurred which in a worse case can result in 
false merging of close objects. Taking into account all of these 
effects, for straight tube test objects a range of scales was set to 
[0.5, 4.0] and for the helix datasets the range of cr was [0.5, 
2.5]. In both cases, y=1.5 and the values of cr were changed in 
steps of 0.5. For the QSM data, the range [1.0,4.0] and step 
0.25 were selected for cr, and y=1.0 was applied to normalize 
the Hessian matrix. Although in practice, the vesselness filter 
parameters can be adjusted for images at hand, the issue of 
optimizing the vesselness filter to obtain faithful centerline 
representation still needs further research [13]. The errors of 
the centerline local direction estimation due to image noise 
slightly increase with reduction of y, but this effects do not 
seem to be statistically significant. 

B. Radius estimation 

Errors in estimation of the centerline orientation angles 
with the use of the two methods are compared in Fig. 6 for 
a tube image with R=1.5. The linear intensity ramp with a jump 
in the middle and Gaussian noise of standard deviation = 10 
were included in the tube image used for the angles estimation. 
Their true values were 6=54.7°and q>=62.0°. One can see that 
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the proposed method ensures high accuracy of angles 
estimation, with an error less than P. For the Hessian-derived 
angles, the error is much larger. Both, the intensity artefacts 
and noise have significant effect on the centerline orientation 
estimated with the use of locally computed Hessian 
eigenvectors. The error standard deviation for the reference 
method can be even 20 times larger in the case of noisy 
images. 

�;r---------------------t 
.. 

52 Azimuthal angle, a 

50 

.. 
10 20 30 50 '" 70 80 90 

Distance along the centerline, I 
Figure 6. Estimated polar and azimuthal angles of the centerline of a tubular 
object with R=1.5 (intensity linear ramp, intensity jump in the middle, 
Gaussian noise of standard deviation = 10). 

The errors in measurement of tangent vector orientation 
make the angle of the vessel cross-section plane different from 
normal to the centerline. This affects the shape of the tubular 
object intersection with this plane and causes errors in the 
vessel radius estimation. A number of experiments were 
carried out using the synthesized tube images with different 
artefact and noise to quantifY those errors. The results of these 
experiments are presented in Table I and Table II. Since there 
is not much difference between effects of brightness and 
contrast artefacts on the radius estimation errors, the case of 
images with a linearly varying contrast and the intensity jump 
is presented in the Tables only. The symbols gO, glO, g20 and 
g30 refer to Gaussian noise standard deviation, respectively of 
0, 10, 20, and 30, compared to [0,650] range of the simulated 
3D image intensity. 

TABLE!. MEAN VALUE AND STANDARD DEVIATION OF AN ERROR IN 
ESTIMATING STRAIGHT TUBES RADII BY MEANS OF THE PROPOSED ALGORITHM 

gO glO g20 g30 
R 

mean stdev mean stdev mean stdev mean stdev 

1.0 0.012 0.040 0,016 0,055 -0,006 0,076 0,002 0,122 

1.5 0.048 0.024 0,045 0,042 0,046 0,067 0,048 0,118 

2.5 0.053 0.019 0,053 0,029 0,065 0,056 0,056 0,066 

As it can be seen in Table I, the absolute mean value of the 
error experienced with the proposed algorithm does not exceed 
the value of 0.1 in any considered case. The error standard 
deviation increases with the standard deviation of the image 
intensity noise. Still its values are not larger than a fraction of 
the voxel edge length; apparently a subvoxel accuracy is 
achieved with the proposed radius estimator. 



TABLE Il. MEAN VALUE AND STANDARD DEVIATION OF AN ERROR IN 
ESTIMATING STRAIGfIT TUBES RADII BY MEANS OF THE REFERENCE 

ALGORITHM 

gO glO g20 g30 
R 

mean stdev mean stdev mean stdev mean stdev 

1.0 -0,326 0,210 -0,402 0,324 -0,829 0,411 -1,237 0,319 

1.5 -0,052 0,041 -0,005 0,039 0,014 0,087 -0,071 0,133 

2.5 0,151 0,070 0,224 0,072 0,268 0,082 0,329 0,074 

The errors are defmitely larger in the case of the reference 
formula (7), based on Hessian eigenvector centerline 
orientation and implemented after [7]. It follows from Table II 
that the magnitude of the mean error is largest for thin tube 
(R=1.0). This error is comparable to the radius value itself 
More detailed inspection (not shown here) indicates that in the 
region of the image intensity jump the error may exceed the 
true radius value even a few times. The mean error decreases 
for a thicker tube (R=1.5) and increases again for R=2.5 which 
may be related to a systematic error introduced by the threshold 
selection algorithm. 

0.0°,9
0

:0.104 

O :�' �': 
0.6 

OA 
0.2 • • •••••• 

o •••••• 
·5 0 5 

Distance, d 
90.0°,9

0
=0.030 

O :[ill' = 
0.6 

OA 
0.2 • 

o 
·5 0 5 

Distance, d 

22.5°,9
0

=0.100 45.0°,9
0

:0.100 

'�""""" '�mOOel 
0.8 .. mage 0.8 

.. Image 

0.6 0.6 

0.4 0.4 

0.2 •••••• 0.2 
• 

• 
•••••• 

o •••••• 0 •••••• 

·5 0 5 ·5 0 5  
Distance, d Distance, d 

112.5°,9
0

=0.101 135.0°,9
0

:0.104 

'bj\J""""" 'bj\JmOOe l 
0.8 

.. image 
0.8 

.. image 

0.6 0.6 

0.4 0.4 

0.2 ......
.. 

0.2 ••• 000° .. 

o •••••• 0 •••••• 
·5 0 5 ·5 0 5  

Distance, d Distance, d 

67.5°,9
0

=0.096 

'�..-

0.8 
.. image 

0.6 

0.4 

0.2 
• 

• ••••• 

o •••••• 
·5 0 5 

Distance, d 
157.5°,9

0
=0.104 

'oomodel 
0.8 

.. image 

0.6 

OA 
0.2 ••••••• • 

o •••••• 
·5 0 5 

Distance, d 

Figure 7. Image model (3) least-squares fitted along N=8 profile lines to the 
simulated image of R=l.O tube passing through the intensity jump, w=0.437. 
The negative values of d correspond to the distance measured from centerline 
to the object edge in the direction of the tails of the arrows shown in Fig. 4. 

Comparison of the tube radius estimation by the two 
considered methods (Table I and Table II) indicates that the 
proposed estimator does not depend, in practice, on the 
intensity and contrast variations, including intensity jumps. 
This robustness to the image artifacts can be explained by 
noting that the radius estimation is obtained through fitting the 
edge blur model (5) to the image values. The fitting is an 
adaptive process which involves adjustment of three 
parameters - (Va, i'lv, R). In the places of varying intensity (due 
to its jump or slow variation) the parameters Va and i'lv are 
adjusted accordingly. The information about the edge location 
(and thus R) is included in the actual, rather steep, transition 
between the inside (Va+i'lv) and the outside (Va) intensity of the 
tubular object. The location of this transition is only slightly 
affected by those two intensities, and therefore they have little 
effect of the radius estimation. This is illustrated in Fig. 7 
where the tube profiles stay almost independent of the 
background intensity jump. 
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Figure 8. Radius of a helix (r=l, c=O.I, linear intensity with a jump, noiseless 
image) estimated using the proposed algorithm. 
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Figure 9. Radius of a helix (r=I, c=O.I, linear intensity with a jump, noiseless 
image) estimated using the reference algorithm. 

The superior accuracy of the proposed algorithm was also 
confirmed by helical objects radius estimation (Figs. 8 and 9). 
Again, a subvoxel accuracy is achieved with the proposed 
algorithm as the true radius changes from 1.0 to 1.9 along the 
helix centerline. In Fig. 9, showing the performance of the 
reference method, much larger differences are observed. Again, 
the image artifacts have significant effect on radius estimated 
by the reference algorithm, with practically no effect on the 
proposed method result. The images of a high-curvature helix 
object (Fig. 2) can also be used to explain the superiority of the 
proposed technique in terms of accurate approximation of the 
centerline local direction, compared to the locally computed 
Hessian eigenvectors. This is illustrated in Fig. 10 where the 
staircase-like plots of the helix skeleton are shown next to 
smooth curves representing the tangent vector components 
computed from spline-approximated functions (4). One can say 
the knowledge included in the shape of the skeleton 3D curve 
is utilized in the proposed algorithm to make it more accurate 
in predicting the tangent vector orientation than the local 
Hessian eigenvalues. 
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Figure 10. Helix skeleton coordinates (left) and tangent vector components 
(right) estimated with proposed algorithm [noisy (g30) image with artifacts]. 

To extract the skeleton of the major vessels visualized in the 
brain QSM image, thirteen Frangi-vesselness images were 
computed [11], respectively using cr=l.0,l.25, . . .  ,4.0. The 
Hessian was multiplied by crY, y=l, prior to eigenvalue analysis. 
The maxima across scales were selected for each voxel to make 
the vessel ness image, thresholded at 8% of the maximum, and 
skeletonized. 

Figure 11. Visual presentation of selected surface-triangulated smoothed 
tubular branches extracted from the QSM brain image in Fig. 3. 

The R-centerline data vectors computed for the parsed 
skeleton branches were used for visual rendering as tubes of 
triangulated surface (Fig. 11). Smoothed R-centerline profiles 
were used to compute the relevant .stl files. The tubes 
representing bifurcating branches were joined together as 
logical union of their slightly extended meshes. Further work is 
under way to evaluate accuracy of the MRA-derived vessel 
model using properly designed flow phantoms [17]. 

IV. CONCLUSION 

A centerline-based method for automated estimation of the 
radii of tubular blood vessel segments, basing of their raster 3D 
images was designed. It was validated with the use of 
simulated 3D images and applied to 7 T QSM brain vasculature 
volumes. Its robustness to noise and artifacts is achieved 
through effective tuning of vessel ness filters, further 
strengthened by spline centerline approximation of the binary 
skeleton - for accurate tangent vector estimation. Least-squares 
fit of the intensity profiles over nonnal-plane cross-sections 
gives reliable radius estimation along centerline. The value of 
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the residual error provides clues on discrepancies from the 
assumed circular symmetry (active contours can be applied in 
such cases), and for the presence of bifurcations. The radius­
centerline datasets were used for blood vessel branches 
visualization and modeling for blood flow simulation. 

ACKNOWLEDG MENT 

The authors thank Doctor Andreas Deistung and Professor 
Juergen R. Reichenbach for kindly providing the volunteer 
brain vasculature QSM MR images used in this study. 

REFERENCES 

[I] W. Boron, E. Boulpaep, Medical Physiology, 2nd edition, Sounders, 
2012, pp. 429-447. 

[2] M. Kocinski, A Klepaczko, A Materka, M. Chekenya, and A 
Lundervold, "3D image texture analysis of simulated and real-world 
vascular trees", Computer Methods and Programs in Biomedicine, vol. 
107, pp. 140-154,2012. 

[3] A Quarterioni, "Modeling the cardiovascular system - a mathematical 
adventure: part I", SIAM News, vol. 34(5), pp. 1-3,2001. 

[4] A Quarterioni, "Modeling the cardiovascular system - a mathematical 
adventure: part II", SIAM News, vol. 34(6), pp. 1-3 (2001). 

[5] Vascular Modeling Toolkit, http://www.vmtk.org, accessed April 2015. 

[6] D. Lesage, E.D. Angelini, I. Bloch, and G. Funka-Lea, "A review of 3D 
vessel lumen segmentation techniques: models, features and extraction 
schemes", Medical Image Analysis, vol. 13, pp. 819-845,2009. 

[7] F. Yuan, Y. Chi, S. Huang, and J. Liu, "Modeling n-furcated liver 
vessels from a 3D segmented volume using hole-making and subdivision 
methods", IEEE Transactions on Biomedical Engineering, vol. 59, pp. 
552-561,2012. 

[8] Wikipedia, "Spherical coordinate system", 
http://en.wikipedia.orglwiki/Spherical coordinate system, accessed on 
April 24,2015. 

[9] T. Liu, P. Spincemaille, L. De Rochefort, B. Kressler, and Y. Wang, 
"Calculation of susceptibility through multiple orientation sampling 
(COSMOS): a method for conditioning the inverse problem from 
measured magnetic field map to susceptibility source image in MRJ", 
Magnetic Resonance in Medicine, vol. 61, pp. 196-204,2009. 

[10] M. Jenkinson, P. Bannister, M. Brady, and S. Smith, "Improved 
optimization for the robust and accurate linear registration and motion 
correction of brain images", Neuroimage, vol. 17, pp. 825-841,2002. 

[II] AF. Frangi, WJ. Niessen, PJ. Nederkoorn, J. Bakker, W.P.T.M. Mali, 
and M. Viergever, "Quantitative analysis of vascular morphology from 
3D MR angiograms: in vitro and in vivo results", Magnetic Resonance 
in Medicine, vol. 45, pp. 311-322,2001. 

[12] AF. Frangi, WJ. Niessen, K.L.Vincken, and M.A Viergever, 
"Multi scale vessel enhacement filtering", M1CCAI'98, Springer LNCS 
1496, pp. 130-137. 

[13] O.P. Dzyubak and E.L. Ritman, "Automation of Hessian-based 
tubularity measure response function in 3D biomedical images", 
International Journal of Biomedical Imaging, vol. 2011, Article lD 
920401,16 pages, doi:IO:1 155/201 11920401. 

[14] T. Lindeberg, "Feature detection with automatic scale selection", In!. 
Journal of Computer Vision, vol. 30, no. 2, pp. 79-116, 1998. 

[15] F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game 
Development, 2nd ed., CRC Press, 2012. 

[16] A Materka, M. Kocinski, J. Blumenfeld, A Klepaczko, A. Deistung, B. 
Serres, J.R. Reichenbach, "Automated modeling of tubular blood vessels 
presented in 3D MR angiography images", submitted for publication. 

[17] A Klepaczko, A Materka, P Szczypinski, M Strzelecki, 
"
Numerical 

modeling of MR angiography for quantitative validation of image-driven 
assessment of carotid stenosis", IEEE Transaction Nuclear Science, vol. 
62., no. 3, pp. 619-627,2015. 


