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Abstract—Quantitative modeling of brain vasculature is im-
portant for diagnosis of vessel pathologies as well as for surgery
treatment planning. Magnetic resonance angiography (MRA)
provides reliable visualization of vessel tree structure and its
organization. Accuracy of vessel segmentation from MRA is
an important step in model building; its accuracy influences
obtained model quality. This paper presents three level set based
segmentation approaches, including one that represents original
authors contribution. These methods are combined together with
vesselness function estimated for analyzed images. Presented
algorithms were applied both for artificial and real brain 3D MR
images. Analysis results along with discussion are also included.

I. INTRODUCTION

Extraction of the vascular network from magnetic reso-
nance image is very significant in diagnosis and therapy
of circulatory system. Analysis of MRA images provides a
quantitative description of vessels architecture. Furthermore,
the obtained model of vessels allows diagnosing lesions of
vascular network, such as stenosis.

A number of imaging modalities are implemented for angio-
graphic images acquisition. Basic approach is based on radio-
opaque contrast agent and X-rays used for imaging. However,
the method is invasive and nowadays may be displaced by MR
imaging with the help of specific angiographic sequences e.g.
time of flight (ToF). Modern scanners (with 3T magnetic field)
approaches in image resolution to the X-ray based computer
tomography. As a result, obtained images enables visualization
of small-diameter blood vessels (<1 mm). Thus, high quality
quantitative models can be build based on extracted vascula-
ture.

There are several methods used for segmentation of brain
blood vessels. They can be divided into 3 groups. First one
comprises methods of image processing, e.g. scale-space or
mathematical morphology filtering, finding skeleton of blood
vessel structure [1], [2], [3]. Another group uses mathematical
modeling of the image, e.g. through fitting parameterized
hypersurfaces to the shape of veins or arteries. These methods
use active contours or level sets [4], [5], [6], [7]. The third
group is based on a priori knowledge about the blood vessel
system, collected in anatomical atlases [8]. Such atlases serve
as certain reference patterns used for presentation and evalua-
tion of the results of segmentation of the vessels obtained for
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diverse individuals. Reviews of the methods of blood vessel
image segmentation can be found in literature [9]. Despite of
much effort in the field of MRA image analysis, the problem
of precise segmentation of the vascular network from MRA
is still unsolved. On the other hand the segmentation is a
crucial step since its accuracy directly influences the quality
of vasculature model obtained in further analysis. Quantitative
description of the model will provide information on vessel
tree geometry like e.g. diameter of individual vessels and their
volume.

The interest in level set based segmentation algorithms has
grown recently, as a result of relative high speed of these algo-
rithms execution and the method ability of accurate modeling
of complex shapes of the blood vessels. These methods are
often used as one of the stages of the segmentation procedure
[10], [11]. This work is aimed at comparison and development
of a number level set based segmentation method. We also
focus on some preprocessing techniques applied to the image
before the segmentation takes place. Moreover, the article
describes our own extension of the LS approach. As a level
set function we implement Chan-Vese mathematical model
[12], widely used for blood vessel extraction. Prior to the
segmentation, two preprocessing patches are applied: Hessian
filtration [7] and estimation of gradient vector flow (GVF)
[13]. The latter is used to emphasize image gradients thus
making vessel extraction more efficient.Next, for preprocessed
image vesselness function (VF) [6] is estimated. It emphasizes
tubular structures in the image making vessel extraction more
reliable by following segmentation algorithms. Finally, the
LS segmentation is performed. Flowchart of image analysis
is presented in Fig. 1. LS1 means segmentation based on
classic Chan-Vese level set model only. LS2 corresponds to
solution proposed by Forkert [14]. It considers additional
energy term added to LS functional to ensure more accurate
vessel extraction. LS3 indicates our proposal, that extends
Forkert approach to muliscale analysis.

II. MATERIALS AND METHODS

A. Analyzed images

To evaluate performance of candidate image segmentation
techniques, from qualitative as well as quantitative points of
view, more realistic numerical phantoms were designed. To
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Fig. 1: Block diagram of image analysis steps

Fig. 2: MIP of original MR brain image

model real-world vessel trees, cylinders of different diameters
were connected together. To generate such vascular tree im-
ages, the computer simulator of tree growth was developed and
implemented [15]. The tree consists of 4000 outlet branches
and each tree image had a size of 256x256x256 voxels. Tree
image was corrupted by the Gaussian noise with zero mean
and standard deviation o2 = 6.

Volunteer brain data were acquired by using the TOF-SWI se-
quence in Friedrich Schiller University in Jena, Germany. Sig-
nal intensity changes occur along the slice encoding direction
due to merging of the slabs and by e.g., applying of a ramped
rf-pulse (TONE pulse). Furthermore, signal inhomogeneities
are introduced by data acquisition with multiple receiving MR
coils and combining of the different MR channels using the
sum of squares reconstruction. These effects are shown in
Fig. 2; if not handled, they can deteriorate the quality of
further processing [16]. To remove signal intensity artifact
the histogram equalization-based procedure was applied [17].
Corrected image is shown in Fig. 3.

B. Vesselness function (VF)

The purpose of vesselness function is to enhance vessel
structures with eventual goal of vessel segmentation [7].The
vessel enhancement is a filtering process that searches tubular
structures in image. The detection of vessel is based on

o7

Fig. 3: MIP of the brain image after contrast nonuniformity
correction

analysis of second order information (Hessian) obtained by
image convolution with second order Gaussian derivatives.
The scale in this filtration is established by parameter s in
Gaussian derivative equation. Hessian matrix is calculated for
every voxel in the three dimensional image. Comparison of
eigenvalues of this Hessian matrix to certain values is used for
detection of tubular structure. The vesselness function equation
for one scale s is presented in [6]. Calculating the VF for many
scales and selecting the maximum value for each scale enables
emphasizing of vessel branches with different diameters [6].

C. Gradient vector flow (GVF)

This approach was proposed in [13] to solve problems
associated with initialization and poor convergence of active
contour algorithms. GVF is an external force computed as a
diffusion of the gradient vectors of a gray-level or binary edge
map derived from the image. The GVF is defined as the vector
field V(x) that minimizes:

E(V) = ///mvvw L IVI@)V(z) - I(2)2de (1)

where x represent voxel coordinates, and p is a regularization
parameter adapted according to the amount of image noise.



The GVF results in image smoothing where the initial vec-
tor magnitudes are small, while keeping vectors with high
magnitude nearly equal. In practice, the GVF preserves even
weak structures while being robust to large amounts of noise
[8]. In [18] GVF approach was proposed for detecting of
tubular objects (including blood vessels) without the need for a
multi-scale analysis (by means of Hessian filtering). Reported
advantage when compared to multiscale filtering was more
precise detection of thin structures laying close each other
avoiding diffusion of nearby structures into one another. The
GVF was combined together with Frangi vesselenss function
and applied both to artificial as well as to CT angio images
providing accurate segmentation results [18].

D. Chan-Vese Level-Set method

Level-set method based on Chan-Vese mathematical model
is versatile and widely used in biomedical image segmentation.
The main idea in level set active contour model is to iteratively
evolve a curve that is controlled by some parameters estimated
from the image. The motion of the curve is obtained by solving
the curve evolution partial differential equation (PDE) [12],
adapted to three-dimensional data space. Finally, the curve
ends its evolution by fitting to objects boundaries within the
given image. This method is an energy minimalization based
segmentation. The two dimenstional PDE is presented in Chan
and Vese paper [12].

E. Improved LS model

In this method proposed by Forkert in [14] a vessel-
ness function is estimated, which quantifies the likeliness
of each voxel to belong to a bright tubular-shaped structure
as, described in subsection B. Level set model is extended
by applying the weights of the internal energy, which are
locally adapted based on the vesselness function information.
The main idea of Forkert approach is to bias the internal
depending on differences between directions of level set
function expansion and the main eigenvector extracted from
vesselness function. This eigenvector point at local vessel
directionality. When the angle between eigenvector and level
set gradient is small, then this term is high encouraging further
LS hipersurface evolution. Otherwise, it blocks LS expansion
outside the vessel, as shown in Fig. 2. Moreover, there is
also anoter term representing a vesselness force added to level
set equation. This additional energy term is used to actively
drive the contour along the vessels. In this paper we adapted
the equations presented in [14] to the Chan-Vese level set
algorithm.

F(¢) = Ee(¢) + Ei(¢,w?) + v(9) )

Where E,(¢) and internal energy E;(¢,w®) with vesselness
dependent weight. Third term v(¢) is the vesselness force. The
external energy equation does not change and it is the same
as equation presented in [12]. However, the internal energy
implements the additional weight w?. Extended internal energy
equation used in this method is presented below.

Ei(¢,u%) = / 1wV H (¢(2)) |dz 3)

The w® in this equation is used to adapt the weight of the
internal energy depending on the angle o between eigenvector
e1, which is the first eigenvector obtained from Hessian and
V. The w? is obtained by:

w?(@) = - (1 = cos(a(x))) )
where the cosine is estimated by:
e1-Vo
lex]l - 11Vl

The scaling parameter p is defined in [12] as curve length.
If one needs detection of as many objects as possible with
different sizes, then p should be small. If larger objects should
be detected only (for example objects formed by grouping),
then larger p should be selected. According to that, when
the cosine in (4) is close to 1 (eigenvector and gradient are
parallel) w? parameter will be close to 0. Otherwise, it will
be equal to the preset value.

The energy functional v(¢), which includes a vesselness force
term is defined as:

V() = w" / H(¢(z))cos(a(x)/V(@)dz ()

The weight of this term is highest in case « is close to
0°r 180°and for large vesselness values forcing a level set
evolution towards tubular structures [14].

4)

cos(a(x)) =

F. Proposed modification

Method proposed by Forkert is very useful for segmenta-
tion of network, which consist of vessels with similar radii.
However, the real vasculature contains vessels with different
diameters. Thus multiscale approach is needed to correctly
emphasize vessels with different size in the vesselness func-
tion. Thus, VF should be calculated for multiple Hessian filters
with different sigma. Selection of number of implemented
filters and their corresponding sigma values depend on vessel
radii variation in the analyzed image. Moreover, the multiscale
effect should be also reflected in weight estimation (4). This
means that eigenvector e; that corresponds to the largest
eigenvalue of hessian matrix should be also estimated for each
of considered scales s. Then, the vesselness function equation
will be modified as follows.

Vmaz (JZ) —

max
Smin <S<Smax

(V(x,s)) @)

The Vipaz(z) The Vmax(x) value is calculated for every
voxel in the image and further used for estimation of the ves-
selness force in equation (5). Furthermore, this value is used
to establish the eigenvector e; for calculation of cos(a(x)).
The e; are evaluated for every filtration scale. For calculation
of internal energy weight, the e; vector corresponding to
the V,4.(x) value is used. The e; estimated for optimal
scale should be parallel with V¢ inside the vessel and al-
most perpendicular outside. Proposed solution should adjust
the w® weight appropriately. Combining this with modified
vesselness function (estimated for multiscale filtering thus
taking maximum values for every image voxel according to



the optimal scale) should lead to improved segmentation when
compared to approach suggested in [14]. Presented method
was implemented in C§ programming language as Windows
application.

III. RESULTS

Fig. 4: MIP of distorted artificial tree image

Fig. 5: Result of HF + VF + LSI

Artificial tree image was analyzed according to diagram
shown in Fig. 1. Its maximum intensity projection is shown
in Fig. 4. Next, Hessian filtering (HF) for scales 0.4 and 0.8
was performed. Independently, GVF were also evaluated. For
both preprocessing results VF was estimated. Obtained images
were fed into 3 versions of LS approach: original Chan-
Vese model (LS1), Forkert modification (LS2), and finally,
our approach (multiscale version of Forkert approach, LS3).
MIPs of segmentation results obtained for these methods are
shown in Figs. 5-8. After segmenting the image processed
by GVF with LS1 technique it was found that in this case
thick branches are not processed correctly (only vessel walls
are detected leaving empty space inside). This is explained by
properties of GVF operator that emphasizes image gradients

Fig. 8: Result of HF + VF + LS3



Fig. 9: Result of HF + VF + LS1

and reduces areas with slowly varying brightness (like internal
vessel part). Since this effect leads to imprecise detection
of thick vessels, LS2 and LS3 techniques were not applied
for GVF image. For quantitative evaluation of segmentation
results, the Jaccard coefficient was estimated. It expresses the
similarity between segmented image and binarized version of
undistorted tree phantom. Its value varies from O to 1 where
the highest one represents the perfect segmentation. J values
are given in Table 1.

TABLE I: Estimated J coefficients for different preprocesss-
ing/segmentation methods

Method Jaccard
HF + VF + LSI (Fig. 5) 043
GVF + VF + LSI (Fig. 6) | 0.52
HF + VF + LS2 (Fig. 7) 0.58
HF + VF + LS3 (Fig. 8) 0.64

Second test was performed on MR ToF image after contrast
artifact correction. The same preprocessing was applied as in
the case of tree image (VF estimation followed by Hessian
filtering and GVF evaluation). Then LS1, LS2 and LS3 seg-
mentation approaches were used. For the same reason, LS2
and LS3 were not applied to the GVF processed brain images.
Analysis results are presented in Figs. 9-12.

IV. DISCUSSION AND CONCLUSION

Results obtained for tree image shows that there is continu-
ity of detected blood vessels in most cases. The only exception
is LS1 where a number of thin vessels are not connected each
other. Also, in all cases the noise does not distorted obtained
vessel structure. LS2 outperforms LS1 providing more accu-
rate detection of thin vessels. It can be explained by additional
energy term added to the LS model. This energy, represented
by vesselness function helps the level set curve in better fitting
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Fig. 12: Result of HF + VF + LS3



to the original vessel shape. For similar reason, LS3 provides
even better result by considering multiscale vessleness func-
tion. It provides more accurate vessel representation when
analyzed tree branches differ in their diameter. The price paid
for emphasizing of thin vessels by vesselness function is vessel
thickening; this is especially visible for GVF-processed image.
Described effects are reflected in J values (Table 1) obtained
for different segmentation approaches, indicating LS3 as a
most accurate one.

Evaluation of brain image segmentation can be done by visual
assessment only. However, partially similar effects can be
observed as in the case of tree images segmentation. LS1
results in good detection of thick vessels, however a number of
thin ones are omitted. Also, the continuity of some fragments
of vessel network is lost. Application of LS2 significantly
increases amount of thin vessels detected, however on the same
time artifacts appear. This is emphasized by LS3: increased
number of thin branches when compared to LS2, but also a
presence of a number of artifacts in resulting image. Advan-
tage of LS3 over LS2 lays also is in more continuous network,
see marked fragment in Fig. 11 and 12. The GVF-based
result shows a big disadvantage of this method - it detects
a lot of artifacts as a result of image gradient enhancement
(in ToF images, beside the vessels, other tissues are also
partially visible).These artifacts are further removed by VF
but, unfortunately, together with vessels with small diameters.
Thus fragments of thick vessels are detected only, along with
artifacts of larger size.

For both artificial tree image and MR brain image Forkert
modification outperforms classic LS approach. However, seg-
mentation accuracy strongly depends on filter scale. Its high
value can cause thickening of vessels with small diameter.
On the other side, selection of to small scale does not detect
vessel inner part, especially when branch diameter is large.
This problem is partially solved by our approach. Introduction
of energy term to the LS model that considers multiscale
vesselness function enables correct detection of branches with
different diameters. This leads to better characterization of
segmented vasculature resulting in more precise brain vessel
geometric model.

To further improve detection of blood vessels, there is a need
to eliminate of artifacts that distort segmentation results. An-
other problem to be solved is continuity monitoring of detected
vessels. Analysis results should be verified on digital vessels
phantoms obtained by means of simulated MR angiography
[19]. Preliminary segmentation results were considered by
radiologist as promising, however further examination is much
needed. All above issues will be topics of further research.
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