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Abstract-The simulation of X-ray images can be computed 
efficiently using ray tracing, a technique well established in 3D 
computer graphics and rendering. Since ray tracing is a discrete 
technique it is prone to aliasing artefacts. However, irregular 
sampling is able to mitigate this problem. In this paper the 
influence of the probability density function of the sampling 
process on the reconstructed spectral density is described. It 
is demonstrated that irregular sampling can be used in X-ray 
imaging simulation to reduce the impact of aliasing. 

I. INTRODUCTION 

X-ray imaging simulation is an important step in develop­

ment between construction and prototyping of X-ray imaging 

systems. It can be used to estimate the quality of the imaging 

process and to confirm the geometry of the setup without 

costly and time-consuming series of tests. This could be 

achieved by modeling the interactions at subatomic levels. 

While this would guarantee realistic results, such kind of 

calculations would be very time consuming. Instead, ray tracing 

uses a more macroscopic approach of interpreting radiation as 

discrete rays and calculating their interaction with physical 

properties of materials, like absorption. Since ray tracing is a 

discrete process the effects of sampling and aliasing have to be 

considered. It is well known that this problem can be mitigated 

by irregular sampling where the sampling points probability 

density function (pdf) influences spectral density and noise of 

the reconstructed images [1]. 

The remainder of this paper is organized as follows: In 

Section II the principles of ray tracing are described. In ad­

dition, the differences between ray tracing used for rendering 

photorealistic images and the application in X-ray simulation 

are shown. Section III describes sampling, the differences 

between regular and irregular sampling as well as the impact 

of using different sample point distribution functions. Finally, 

in Section IV these effects are demonstrated by some examples 

and simulated X-ray images rendered with different sampling 

distributions are depicted. 

II. RAY TRACING 

Ray tracing is a technique for rendering photorealistic im­

ages well known in computer graphics. The basic algorithm 

is based on the idea of emitting rays of light into a 3D scene 

beginning at the eye point [2]. If an object is hit by a ray, 
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the intensity and color of the corresponding sensor point is 

calculated depending on the properties of the 3D object. Figure 

1 illustrates this basic concept of ray tracing. 

.. 
eye point 

Fig. I. Schematic of Ray tracing 

In case of X-ray imaging simulation, the structure differs 

from the above-mentioned concept. In X-ray laminography [3] 

the X-ray sensor is contained in a base plate and the X-ray 

tube is mounted above it. The irradiated volume moves with 

constant speed through the area between source and sensor as 

shown in figure 2. 
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Fig. 2. Ray tracing in X-ray imaging 

Contrary to the ordinary ray tracing, the rays are limited in 

length between the sensor and the source. In addition, in X-ray 

imaging the transmission of radiation through the volume and 

its interaction with materials is evaluated, and for applications 



in industrial quality ensurance the objects are large enough to 

prevent refraction. Initially it is also assumed that there is no 

scattering in the X-ray propagation. In industrial applications 

monochromatic X-ray tubes are not used, therefore absorption 

has to be calculated depending on the photon energy of the 

X-rays. 

The irradiated volume has to be represented in such a 

way that the path of a ray through different materials can 

be calculated. One possibility is that the volume consists of 

homogenous primitives each containing a specific material. 

These could be simple primitives, e.g. cuboids, bowls, trian­

gles, but also complex forms like Non-Uniform Rational Basis 

Splines (NURBS). Another way to describe the volume is to 

model it as a set of finite volume elements (voxel). This, in 

fact corresponds to breaking down the volume into many very 

small cuboids consisting of homogenous materials. The latter 

is much more prone to aliasing than the first. 

III. SAMPLING DISTRIBUTION FUNCTIONS 

Sampling is the process of converting analog into discrete 

functions. If a bandlimitted analog function is sampled with 

a sufficient set of equally spaced points, both representations 

contain the same information and can be mutually converted. 

The error which appears due to spectral overlapping when 

using too less sampling points is called aliasing. By irregular 

sampling the aliasing artifacts can be replaced by broadband 

noise which is less visible for human eyes [4]. The following 

four different sampling point distributions will be considered: 

• regular point sampling 

• uniformly distributed point sampling 

• Poisson-disc sampling 

• jittered-grid sampling 

The sampling point pdf and its effect on the spectrum of 

the sampled function will be discussed for the 10 case since 

it is easier to comprehend these results than in the 20 case. 

A. Regular point sampling 

Regular point sampling is the well known case of sampling 

in signal processing. The sampling positions are equally 

spaced with uniform distance TA. In this case the sampling 

function a(t) can be written as 

00 
(1) 

v=-oo 

where 6(t) denotes the Dirac delta function. 

The spectrum of the sampling function A(f) can be cal­

culated using the Fourier transform of the sampling function 

(1): 

00 

A(f) = F{a(t)} =fA L 6(f - /L' fA), 
1"=-00 (2) 

where 
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Anticipating random sampling, the regular case can be 

written as a random point process, where the random variable 
dt;.t denotes the intervals between sampling points with the 

pdf f dt:,,· Thus, the regular point sampling process can be 

described by the pdf 

(3) 

Using this consecutive sampling point distances, the ab­

solute sampling points Ti can be calculated by the sum of 

previous distances 

i 
Ti = L dt;.t,1/ 

1/=0 
(4) 

which can now be used to rewrite the sampling function (1) 

as 

00 
a(t) = L 6(t - Ti ) . (5) 

i=-oo 

This form is useful to determine the spectrum of a sample 

function of this random process by using the Fourier transform 

and the shifting property of the Dirac delta function: 

A(f) = F{a(t)} = J
oo f 6(t - Ti ) ' e-j27rjtdt 

-00 i=-oo 
00 

= L ej27rjTi 

i=-oo 

(6) 

Figure 3 shows a segment of the regular sampling function 

and its magnitude spectrum. This magnitude spectrum is 

calculated according to equation (6) for a finite number of 

1000 sampling points. Therefore, such a magnitude spectrum 

my differ from the theoretical spectrum, e.g. given by (2). 

However, it can be seen that the periodicity in the time domain 

also shows up in the frequency domain. 
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Fig. 3. Segment of the sampling function and magnitude spectrum 

From IA(f)1 of figure 3 it is obvious that the Nyquist­

Shannon sampling theorem states that a bandlimited signal 

has to be sampled with a sampling frequency at least twice as 

high as the maximum signal frequency to avoid aliasing. 



B. Uniformly distributed point sampling 

Uniformly distributed point sampling is a nonregular sam­

pling process with sampling points randomly distributed. This 

can be described by a point process which generates inde­

pendent sampling points with an exponential pdf of the point 

distances [5]: 

h3.t(�t) = 

' 
{A. e-'\·�t 

0, 

�t � 0 

else 
(7) 

The rate parameter A controls how many points are expected 

per time interval. Since this is a random process it is illustrative 

to consider a sample function of this process. Figure 4 shows 

such an example function and its magnitude spectrum. 

Fig. 4. Segment of an example of the uniformly distributed sampling function 
and magnitude spectrum 

The sampling function shows two conspicuous character­

istics: First, there is no regularity in the distribution of the 

samples. Second, there are some rather large gaps between 

two points, but also some sample points that are located very 

close together. This influences the spectrum of the sampling 

function. It has a DC peak but at all other frequencies there is 

a noise floor only. Due to the lack of regularity in the sampling 

function there are no replicas in the spectrum of the sampled 

signal. Therefore, no aliasing artefacts will be visible, they are 

replaced by additional broadband noise. 

C. Poisson-disc sampling 

The basic idea behind Poisson-disc sampling is to prevent 

the sampling points from getting too close to each other. 

The use of this sampling point distribution is inspired by the 

structure of mammal eyes. YELLOT published in 1983 that the 

extrafoveal cone density in a rhesus monkey retina is smaller 

than it has to be to satisfy the sampling theorem [6]. But 

these cones are placed in a Poisson-disc distribution, reducing 

the visible noise below that expected as a consequence of 

the violation of the sampling theorem. The minimum distance 

condition can be achieved by modifying the pdf (7) of the 

sampling distances: 

�t � to 
else 

(8) 
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Figure 5 shows a sample of the Poission-disc sampling 

process. In this case the minimum distance of the sampling 

points is chosen to be three-quarters the regular sampling 

interval, i.e., to = 0.75 · TA. 
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Fig. 5. Segment of a sample function of the Poisson-disc sampling function 
and magnitude spectrum 

As intended the sampling points are not closer than 0.75·TA. 

As a consequence the noise floor at low frequencies is low. At 

high frequencies the noise level is as high as it would be in the 

uniformly distributed case. This fact predestinates Poisson-disc 

sampling if it is intended to sample non-bandlimited signals 

for human eyes, since human eyes are more sensitive to low 

frequency noise than to high frequency noise. The amount 

of noise reduction in the low frequency range and the exact 

appearance of the noise figure changes with the minimum 

distance to. The noise figure varies with the sampling pdf, but 

the overall noise level does not change [4]. It only depends 

on the average number of sampling points per unit. 

D. Jittered-Grid sampling 

The idea behind jittered-grid sampling is to break a regular 

grid by jittering the sampling positions randomly. The advan­

tage of this approach is the simplicity of calculation. In this 

case bias free uniformly distributed jitter nJ of the width w is 

added: 

00 

a(t) = TA L 6(t - v . TA + nJ ) 
v=-oo 

(9) 
-� :::; �t:::; � 
else 

In figure 6 an example of a jittered-grid sampling function 

with uniform jitter of width w = TA is shown. 

The magnitude spectrum of the jittered-grid sampling func­

tion shows very low noise at low frequencies but the noise 

level reaches the uniform noise level at lower frequencies 

than for Poisson-disc sampling. Interestingly, there will be 

attenuated peaks at multiples of the sampling frequency if the 

amount of jitter is too small. This will then cause aliasing 

artefacts. 

It is also possible to use other jitter distributions like 

normally distributed jitter. They may have other impacts on 

the spectrum and need to be evaluated in further studies. 
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Fig. 6. Segment of an example of the jittered-grid sampling function and 
magnitude spectrum 

IV. IMPLEMENTATION 

To compare these four sampling distribution functions they 

are used in a simple X-ray imaging simulator as shown in 

figure 2 and implemented in MATLAB. A mono-energetic 

X-ray point source is assumed which irradiates a volume, 

consisting of 512 x 512 x 512 voxels. The volume was 

generated by the function phanlOm3d.m [7]. 

The target resolution of the sensor is 200 x 200 pixels. Since 

the reconstruction of irregularly sampled images is nontrivial, 

the images are rendered at higher sampling densities and 

reconstructed by using a multistage box filter as described by 

MITCHELL [8]. The Poisson-disc samples are generated by the 

function generaleyoisson_2d.m [9]. At the target minimum 

distance of 0.75 . TA, where TA corresponds to the distance 

of two regular sampling points on the axis, 384343 sampling 

points are generated which corresponds to an oversampling 

factor of about 9.6. Correspondingly, the same number of 

sampling points is applied to uniformly distributed sampling. 

For regular sampling 620 x 620 = 384400 regularly spaced 

sampling positions are used. For jittered-grid sampling these 

sampling positions are jittered by the full distance of the 

sampling points w = TA. 

In this basic simulator a ray only hits one voxel per voxel 

layer. At flat angles it is possible that a ray can penetrate more 

than one voxel per layer which could cause additional errors. 

In the simulator used here the angles of the rays to the central 

ray are relatively small so this effect can be neglected. 

In the consecutive simulated X-ray images are shown ren­

dered using the four different sampling distributions. Figure 

7 shows a section of the sensor image using regularly spaced 

sampling. 

In this regularly rendered image prominently visible lines 

appear. They are due to aliasing effects which can not be 

suppressed by oversampling and filtering. Apart from that the 

image containes only little noise. 

In figure 8 the sampling points are uniformly distributed. 

This picture shows no visible aliasing artefacts. Compared 

to the regularly sampled image the noise floor is higher. The 

black pixels are caused by a lack of sampling points in the 

area of this pixel. Since the sampling positions are uniformly 

distributed it is not impossible that there are no sampled values 

within a pixel. 
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Fig. 7. Phantom rendered with regular sampling 

Fig. 8. Phantom rendered with uniformly distributed sampling 

Figure 9 shows the same scene rendered with Poisson-disc 

distributed samples. 

In this image neither black pixels nor aliasing artefacts 

are visible. The noise is also less noticeable compared to 

uniformly distributed sampling. Because of these properties 

Poisson-disc sampling is prefered in rendering. 

In figure 10 the section rendered with jittered grid sampling 

is depicted. 

Here too, neither visible aliasing effects nor black pixels 

appear. However, compared to Poisson-disc sampling full 

distance jittered grid sampling results in an image with more 

visible noise. 

V. CONCLUSION 

Ray tracing is an effective way to calculate simulated X­

ray images. Aliasing artefacs can be replaced by broadband 

noise through irregular sampling. This noise can be made 

less visible for human eyes by Poisson-disc sampling. The 

reconstruction problem of irregular sampled images is not 



Fig. 9. Phantom rendered with Poisson-disc sampling 

Fig. 10. Phantom rendered with jittered-grid sampling 

finally solved. Optimized parameters and sampling pdfs have 

to be investigated in further studies. 
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