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Abstract- A hardware and software solution for guitar string
vibration measurement by fast cameras is described. Orthogonal
setup for 3D image acquisition is proposed capable to capture
several thousand image frames per second. Dedicated image
processing algorithm was developed and described in the paper,
aimed at tracking the movement of some selected points along the
string. Fast and accurate tracking results provided a detailed
information about vibrations, that was transformed into sound
samples. Described sound processing methods were applied in
order to enable a comparison of captured string vibrations with
the sound recorded using a microphone. Analysis of obtained
results, conclusions, and future work plans are included.

I. INTRODUCTION

The main aim of this research is to obtain a detailed
information about picked string movement and its influence
on the evoked sound, and compare recreated sound with the
reference microphone recording. A hardware and software
solution for guitar string vibration measurement by fast
cameras was designed and applied for this purpose. Detailed
information about the recording setup and image processing
algorithm used for image-to-sound transformation are
presented in this paper.

A string movement is a complex process, starting with
introduction of an energy by pulling the string, releasing it and
then propagating energy onto all string segments. This induces
guitar body vibrations, as a guitar nut and saddle are in contact
with string endpoints. All mentioned elements influence air
molecules disturbances inside the body and around it, and
final sound is emitted through a sound hole and all elements of
the body [18].

The guitar acoustics can be studied by mathematical
modeling and simulation (e.g. finite elements), by sound
recording and analysis, and finally by direct measurements of
vibrations:  electromechanical by piezo-electrics [2],
electromagnetic pickup [13], an analog position sensing
detector [1], laser vibrometry [4] and high speed cameras
[10][15]. An interesting idea was presented by Pakarinen and
Karjalainen involving string vibrations measurements in two
polarizations and in multiple points along a metal string using
electric field sensing [14]. Askenfelt and Jansson presented an
experimental study of wave motion on a piano string and a
corresponding spectra. In this research string motion was
measured using an electrodynamic method [2].

As it was mentioned above, string vibrations can be analysed
in many different ways. Application of fast cameras for
analyzing string vibration is the main purpose of this work.
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Similar approach can be found in Kartofelev et. al. research.
They applied high-speed line scan cameras to capture piano
and bass guitar strings motion [7][10].

Our approach involves synchronous visual and acoustical
recording: high speed cameras register string vibration, and
the microphone records result sound. Thus a detailed
observation is possible: movement phases are visualized on a
plane graph, the location is transformed into sound samples
and comparison with the real sound by means of time and
frequency domains analysis is performed.

II. METHOD DESCRIPTION

Visual tracking of vibrating object movement is performed
by utilizing synchronized high speed cameras, able to acquire
more than 4000 frames per second, for observation of the
object from two orthogonal directions. As a result high
resolution spatio-temporal measurements of displacement,
speed, and acceleration of the vibrating object are obtained.

Using macro lens and high resolution sensor assures
precision of the object localization, reaching up to 16 microns.
Previous Authors’ experience involves research and
development of video analysis methods published previously
[5][6][17], able to automatically localize and track object of
interest and key points visible in the image. Vibrating element
(e.g. a single point on the string) can be tracked without
interfering its motion. Registered sequence of the object
movement is analyzed offline and provides detailed data of
high spatio-temporal resolution. A dedicated software for
video analysis of object vibrations in three dimensions was
developed by the Authors.

A.  Image and sound acquisition

Image acquisition system was design to capture spatial
vibrations of the string. Two fast cameras were applied for this
purpose. Cameras were oriented at the right angle (90 degrees)
between them. In this configuration it is possible to record the
vibration of a desired point on the string in two views
simultaneously. In Fig. 1 the configuration of recording setup
is depicted. The whole system was based on two fast cameras:
Basler acA2000-340kc. Each camera was equipped with a lens
SV-2514V with spacer ring Goyo Optical EXT-ULSET with a
10 mm length and was connected to NI PXle-1435 Camera
Link frame-grabber. During the recording additional external
light source was applied. For image capture the StreamPix
v5.0 Multi Camera software by NorPix Inc. [11] was used.
The region of interest was limited to: 2000x16 pixels. The



applied frame rate was equal to 4200 frames per second and
camera exposure time was equal to 200 ps.

For the acoustic signal acquisition B&K 4189-A-021
microphone was used, connected into the PXle 4492 card.
Measurement microphone was placed between fast cameras,
in front of the observed string vibrating point.

In Fig. 2. the configuration setup is shown. To avoid
cameras vibration they were mounted on heavy wood box, and
the guitar body was fixed as well. During recordings the string
was plucked manually.
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Fig. 1. The recording setup of the string vibrations
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Fig. 2. The overview of recording setup

B.  Image processing algorithm

Video recording from each camera is processed to estimate
location of the observed string element, expressed in pixels. It
is assumed that the camera does not introduce non-linear
distortions, and each observed part is uniformly projected onto
image pixels, with a scale ratio of 62 pixels per 1 mm.
Therefore, with an unknown but uniform ratio the
displacement in pixels can be transformed into local sound
pressure change, and thus as a sound sample value.

The string segment displacement is determined by the
following procedure: color to grayscale image conversion,
image binarization by adaptive thresholding, image vertical
projection, string segment localization and center value
calculation, and fusion of results from two cameras. These
phases are described and discussed below.

Color to grayscale conversion
The acquired image is a raw Bayer image [3] and initially
conversion to RGB is applied using Gradient-corrected
bilinear interpolation algorithm with filter pattern 'GBRG' [8].
The converted image is RGB, 8 bits per channel. As the
sought object bright color is distinct in the image a color
information can be reduced to a grayscale, by applying for

every pixel component transformation (1):
k=0.5-

(-r+g+b) Q)]

where:
r, g b —red, green, blue channel values respectively,
k —result gray value.

Subtracting the red component (copper bronze wound red
color) from the image results in increased separation of the
visible light glint on the string segment from other elements
(Fig. 3). The 0.5 factor in (1) is used for normalization only, as
the expected maximum value of (—r+g+b) is (—0+255+255)
for 8-bit per channel, thus the 0 < £ <255.

a) b) <)
Fig. 3. Comparison of light glint visibility and contrast in: a) original color

image, b) standard grayscale image (brightest area value is 189), c) proposed
conversion method (brightest areas value is 242)

Image binarization by multilevel thresholding

The 8-bit grayscale image still contains noise and not precise
shape of the object of interest. Binarization procedure is aimed
at zeroing pixels determined as background and setting
foreground pixels values to 1 (Fig. 4). Various methods are
present in the literature, and an adaptive thresholding is
proposed in this work: Otsu method based on image histogram
analysis [12].

a)
b)
Fig. 4. Sample results of image binarization: a) original image,

b) result of Otsu thresholding

This method assumes a histogram of pixel values is bimodal:
two distinct classes of foreground and background pixels are
observed. Then, the threshold is adjusted for maximum
separability of classes. The best threshold provides minimum
intra-class variance and maximum inter-class variance.

Image vertical projection and filtration

Elliptical shapes of light glints on the string wound are
analyzed only by means of location, because the string
element is considered as ideally rigid, thus the size and
eccentricity are neglected. A vertical projection, i.e. sum of
pixels in every column, was used to determine the location of
the object (2).

PGy, 1, )) 2)

where:

1(i, j) — image pixel at (i, j) coordinates

p(i) — vertical projection result

At this stage still some visual noise was expected, therefore a
moving average of length 15 was applied to p(7) to reduce the
impact of noise on the analyzed shape (Fig. 5). Finally a
threshold of 0.9 of max(p(i)) was used, to determine columns
containing definitive parts of the object.



String segment localization and center value calculation

The first and the last columns were taken as the object left
and right bound, and their mean value as the object center
location (Fig. 6). The obtained result is a one-dimensional
signal, representing the movement of the string segment in one
direction only (Fig. 7).

Results fusion

Two synchronized cameras were used in the recordings.
Obtained displacements were measured along planes parallel
to images planes. The fusion of both results allowed acquiring
two dimensional movement of the string segment.

Based on the assumption of cameras axes orthogonality, a
local coordinate system was proposed, with x axis consistent
with x in the first camera, and y axis with x on the second
camera (Fig. 8). Therefore by superposition of x and y a top
view on the string movement was obtained (Fig. 9).
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Fig. 5. Sample vertical projection (dotted) and smoothed profile obtained by
moving average (line)
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Fig. 6. Result string localization: vertical lines denote area of values
exceeding the pmas- 0.9 threshold, and the final location is middle point
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Fig. 9. Phases of the registered motion: a) samples 0:1k, b) samples 1k:2k, c) samples 2k:3k, d) samples 3k:4k. Older samples are represented by darker color,
newer by brighter color. Axes scaled in pixels
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The real sound perceived at any point in space is a result of
air pressure disturbances. For simplification it was assumed
here, that the moving string directly influences air
compression and rarefaction, and pressure changes depend on
changes of distance between the string element and point of
reception. The Euclidean distance between each position x(t),
y(t) over time and the receiver (XpeVe.) (Fig. 10) was
calculated as:

(O (ree (@) + Gree ()17 3)

The process involving receiver point was a simplified
approach mimicking the principle of operation of pickup in
electric (or electro-acoustic) guitars, where the movement of
steel string in the electromagnetic field disturbs the current
flow in the pickup, what is directly interpreted as a sound
signal.

Receiver location has partial influence on the obtained
signal. Particular trajectory observed from various points
result in slightly changed relations of the recreated harmonics
(Fig. 11).

The obtained r(f) is normalized (Fig. 12), to eliminate bias
and limit the signal to a range <-1; 1>:

raO)=[ r(@) —# ]/ [ max(r(2)) — 7 ] “)
where:

7 — mean value of the signal (7).

III. SOUND ANALYSIS RESULTS

The video recording was made with 4200 frames per second,
thus resulting in the same number of sound samples per
second. Based on the Nyquist-Shannon sampling theorem the
maximum sound frequency component reconstructed correctly
is 0.5:4200=2100 [Hz]. All higher frequencies are distorted
due to aliasing. For sound recordings an antialiasing filter is
applied, preceding the sampling. Similar approach to limit the
harmonics in visual sampling during the observation of string
vibration is not feasible, therefore every component higher
than Nyquist frequency is aliased. The recorded guitar A
string is 110Hz, thus, up to 2090Hz (19th harmonic) is
correctly recreated.

Acoustic signal recorded by the measurement microphone
was compared with the signal obtained using described video
processing algorithm. For this purpose the frequency analysis
was performed. Both signals were synchronized in the time
domain, aligning signals beginnings. In Fig. 13-15 three
different parts of both signals are shown. It can be observed
that for the first part the first harmonic (110 Hz) is dominant
(Fig. 13). In the second part of the signal (Fig. 14) in
microphone sound the second harmonic (220 Hz) starts to
dominate (the period of the top curve is two times shorter than
for bottom curve). Another difference is related to release
phase (Fig. 15), as the amplitude of video-based signal
decreases slower than for microphone signal.
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Fig. 10. Superposition of signals x and y interpreted as top view on the string
movement. Sample observation point located at (200,800) and measured
distances to string localization are illustrated
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receiver points (right) to part of the trajectory (samples 16400:16700)
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Additional information about differences between
considered signals were found using analysis performed in
frequency domain. For this purpose average spectra for both
signals were calculated (Fig. 16). Frequency analysis
resolution was 1024 FFT points, Hanning window was
applied, 30000 Sa of signals were analyzed, sampling
frequency of signals was equal to 4200 Sa/s. The original
sampling frequency for microphone signal was 48000 Sa/s,
therefore it was resampled down to 4200 for comparison.

Level of f;=110Hz from video analysis was selected as the
reference and real sound spectrum was calibrated accordingly
to match this level.
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Fig. 13. Acoustic signal recorded by the measurement microphone (top) and
the signal obtained using described video processing algorithm (bottom) —
beginning of the signal
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Fig. 14. Second harmonic became dominant in acoustic signal recorded by the
measurement microphone — middle part of the signal, t=2 seconds

Higher harmonics for real sound are relatively greater than for
sound calculated on the basis on image processing,
nevertheless up to 12 frequency components can be observed,
matching the ones present in real acoustic signal. Several
reasons of such fact can be indicated. First, different means of
acquisition produced different results, as the microphone
registers acoustic pressure evoked by the whole vibrating
string together with the response of the instrument body, thus
spectrum is very wide and contains many harmonics. For the
sound reconstructed from videos a movement of only single
point of vibrating string is observed, and the response of the
instrument body is neglected. The “source” signal which
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causes the instrument body vibrations is observed rather than
the “result”. Lastly, assumed receiver point has partial
influence on harmonics relations. These are main reasons of
differences between considered signals.
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Fig. 15. Amplitude of signal obtained from video frames decreases slower
than for signal from microphone — last part of the signal, t=6 seconds
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Fig. 16. Average spectra for sound recorded by the measurement microphone
(black line) and calculated on the basis on image processing (red line)

IV. CONCLUSION AND FUTURE WORK

A hardware and software solution for guitar string vibration
measurement by fast cameras was described in the paper. On
the basis of performed video and audio recordings comparison
of captured string vibrations with the sound recorded using a
microphone was successfully performed both in time and
frequency domain. The conducted research revealed
complexity of acoustic and mechanic phenomena of guitar
sound.

In the future work Authors will focus on diagnosing
differences between particular harmonics amplitudes for both
kinds of signals. This work will involve comparison of several
types of string instruments.
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