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Abstract—Two approaches to Hessian-based estimation of
tubular blood-vessel radius from 3D raster images are compared.
In the proposed approach, binary skeleton is found for each
tubular vessel-tree branch by thresholding the Hessian-derived
vesselness image. Coordinates of the binary skeleton are
approximated with smooth 3D spline functions. Their derivatives
with respect to arc length give local tangent vectors, and thus
planes normal to the vessel centerline. A proposed image
intensity profile model is then least-squares fitted to the vessel
cross-section by those planes, at each skeleton point. The circular
vessel local radius is one of the model parameters. In the
reference method, the vessel centerline direction is defined by the
local Hessian eigenvector corresponding to the smallest
eigenvalue. The radius is estimated using a square root of the
vessel cross-section area (as obtained by an adaptive
thresholding), divided by n. The impact of Frangi Hessian filter
parameters and scale selection on the methods’ performance is
examined. Higher accuracy, precision and robustness to image
noise and artifacts is demonstrated for the proposed method.
Example of the method suitability for modeling of brain
vasculature magnetic resonance images is also presented in this

paper.

Keywords-3D vascularity image analysis, vessel tree modeling,
radius-centerline representation

L. INTRODUCTION

Mathematical modeling of the human vascular system is
one of the important tasks in biomedical engineering. The
models provide quantitative information for vessels shape,
allow simulation of blood flow and tissue perfusion, and are
essential for personalized diagnosis or surgery. The basis for
this modeling are three-dimensional images — magnetic
resonance angiography (MRA) or computed tomography (CT)
mainly.

The human vessel trees have a form of connected branches
of different diameters. To a first approximation their cross-
sections are close to circular and the diameter can be
considered large (tens of mm for some arteries), medium (one
or few mm) and small (tens of micrometers for capillaries) [1].
The best-resolution contemporary whole-body MR scanners
provide good quality images with the voxel edge of about 0.5
mm. As a consequence, the small-diameter branches (thinner
than the voxel edge) cannot be modelled as pipes of defined
geometry, since a number of such vessels may pass through
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a voxel. A network of such thin branches may contribute to the
texture of corresponding image region, and quantitative texture
analysis can be used to characterize them for medical diagnosis
[2]. Therefore, to build a complete model of the human
vasculature, one has to combine different approaches, best
describing regions filled with branches of different diameter
and topology [3,4]. This paper is aimed at development of an
automated method of geometric modeling of relatively thick
vascular branches, whose diameter is larger than the length of
voxel edge.

In general, there are two approaches to surface modeling of
blood vessel branches. One is based on image segmentation,
e.g. with the use of level sets and marching cubes [5]. It is
computationally time consuming, moreover it is difficult to use
it for automated model building. The other, considered in this
paper, is based on tracking the vessels centerline and on
modeling their cross-sections afterwards, as reviewed in [6]
and recently expanded in [7]. The high accuracy and robustness
to noise and artifacts of the proposed vessel modeling
algorithm is demonstrated with the use of computer-simulated
and real-world brain-vasculature MR images. Although the
circular cross-section geometry branches are considered, the
method is applicable to other shapes, e.g. elliptical and even
triangular as in the case of the superior sagittal sinus vein.

II.  MATERIALS AND METHODS

A.  Materials

To evaluate accuracy of the radius estimation algorithm and
the effects of noise and artifacts, a set of digital-phantoms —
computer-synthesized isotropic-voxel 3D test images — has
been created: straight tubes with random orientation and
different diameter (1.0, 1.5, 2.5) and a helical shaped tubes
with variable radius. The straight tube vessel models had
a fixed length of 80a, where a is the voxel edge length. They
were placed inside a 100x100x100 voxel cube at randomly
selected polar and azimuthal angles, respectively 6 and ¢ [8].
The synthesized image voxel intensity was proportional to the
volume of (partial) intersection of a voxel with the tube model,
scaled to the range [0,125] [2].

To account for image noise, pseudo-random numbers of
Gaussian probability distribution were added to the voxel
intensities of the tube image, with zero mean and selected



standard deviation of 0, 10, 20 or 30. Three kinds of image
artifacts were simulated — an intensity jump of 30, intensity
linear ramp (from 200 to 300) and linearly varying contrast
(from 0.7 to 1.3). The intensity of resulting images took its
values in the range [0,650]. Example images of this type are
illustrated in Fig. 1.

Figure 1. Synthesized image of unity-radius tubular object at 6=54.7°nd
©=62.0°, with superimposed intensity jump and linear variation (noise standard
deviation = 20): a) maximum intensity projection (MIP) on Oyz plane, b)
surface plot of the maximum intensity projection.

Surface that encapsulates a helical shaped model is
generated based on helix parametric equation. Radius of a tube,
corresponding to surface of a vessel, varies along the center
according to (1) where x,, y, z, are the helix center co-
ordinates, R; is the loop radius, # is the initial tube radius, and
c is a constant. Vertical separation of the loops is 6z. Example
synthesized noisy image of a helical object is shown in Fig. 2.

x =x, +[R, +r(1+ cp)cos(q)]cos(p)
Y = Yo +[R, +r(1+cp)cos(q)]sin(p)
z =z, +r(l+cp)sin(q)+2p
q<[0,27], pel0,37]

(M

The QSM brain MR images were measured for seven
healthy subjects (approved by the ethical committee of
Friedrich Schiller University in Jena, Germany) with a flow
compensated 3D single-echo gradient-echo sequence
(TE/TR/FA/BW = 10.5ms/17ms/8°/140Hz/px, voxel size =
(0.4x0.4x0.4)mm> on a 7T MRI system. The scans were
carried out with three different orientations of the subject’s
head with respect to the magnetic field to implement the
COSMOS approach [9], further co-registered. Phase aliasing
was resolved by 3D phase unwrapping and background phase
contributions were eliminated with the SHARP technique
[10]. A MIP visualization of a fragment of one of the QSM
images of this study is presented in Fig. 3.
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Figure 2. Synthesized image of a helix (=1, ¢=0.2, noise standard deviation
equals 20): a) 50" cross-section, b) 3D model of the tube.

Figure 3. An example MIP of the brain QSM image.

B.  Methods

In the first step of our algorithm, binary centerlines of
tubular object regions are automatically computed. For this
purpose, a multi-scale Hessian-based wvessel filter [11] is
applied to the image. In effect, tubular shapes in images are
enhanced through Hessian eigenvalue analysis. In our method
the centerlines are initialized as binary skeletons of thresholded
vesselness images. To account for varying vessel diameter
along its centerline, a number of filtered images are computed,
each for different value of o, the underlying Gaussian kernel
[12]. The scale coefficient ¢ has to be matched to the diameter
of tubular objects. Accordingly, the thin vessel regions are
enhanced by a kernel with small-scale and regions of thicker
vessels by kernels with higher scale values. The maximum of
different-c filtered intensity images found for each voxel is
taken as the vesselness filter output (VEF).

It has been observed [13] that the vesselness filter should be
adjusted to the tubular objects structure by weighting the
different-c responses prior to finding the maximum across the
scales. The simplest weighting method suggested in [11,12]
relies on multiplying the Hessian matrix by a scale-dependent
coefficient ¢’ where y is a constant. We have carried out
anumber of experiments in which images of single tubular
objects as well as of separate objects with parallel centerlines



closely positioned to each other (not shown in this paper) were
filtered using different values of y. It was found that y=2
(recommended in the literature [e.g. 12,13,14] as providing
equal filter responses for different scales) leads to vessel
blurring with resulting displacement and disappearance of
some skeleton lines. Choosing 1<y<1.5 enhances the small-
scale responses giving representative skeletons as will be
shown later.

Hessian-derived vesselness images are thresholded and then
skeletons are found of the resulting binary images with the use
of an ITK-based, home-compiled vKnife software. Next, in the
second step of the algorithm, all n-furcations of the binary
skeleton are detected and the skeleton is split into M non-
furcating segments. Each of those segments is supposed to
represent a part of a tubular object (a branch of the blood vessel
system). Sufficiently long skeletal objects are preserved,
containing more than few voxels each, to maintain
representation of elongated tubular structures.

Consider an m-th branch 3} = 1 Voo Vg, ) of the

skeleton, m=1,2,...M, where K,, is the number of voxels in it.
To simplify notation, one can neglect the branch index
vy ={v,}> K=K, and write

(@)

where v, =(x,,y,,z,), k=1,2,...K, denote coordinates of the

consecutive voxels of the considered skeleton branch. For each
point, an arc length /; of the branch (since its beginning at £=1)
can be approximated as

lﬁélkﬁ\/(xk _xk—1)2+(yk _)’k—1)2+(Zk —Zpq )2

where /,=0. In the third step of the algorithm, the coordinates of
the binary skeleton segment of each tube are approximated by
continuous functions £(/), /), f2([). These functions are found
using spline approximation to the respective three sets {xy/},
{wul}, {zul}. In the fourth step, the derivatives of these
functions with respect to the parameter /

_9: 4 4.
a d di

can be computed for each 4=1,2,...,K. They approximate
components of the tangent vector #=(fu, % k) to the skeletal
line. In the fifth step of the algorithm, a normal (vessel cross-
section) plane m; to the 7 vector is found at each skeletal point
of each of the skeleton segments — e.g. through appropriate
quaternion [15] calculations. Local orientation of the centerline
is used to define the normal plane at each centerline point.

D=LV Vi
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s z
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In the sixth step of the proposed algorithm, the image
intensity profile function inside the vessel region is used to
model the actual image intensity at the distance d from a tube
centerline, in N angular directions on this plane (see Fig. 4 for
N=8). The following smooth model is used in our study

d-R

w

u(d;Vy, A, Rw)=Vy +Aperfe( ) (5)
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where erfc(.) is the complementary error function and V)
(intensity of the surrounding tissue), Ay (intensity increase
inside the vessel, above V), w (variable related to the width of
the intensity transition from vessel to background), and R (the
vessel radius) are the parameters. The parameter w accounts
for the extent of object edge blurring and is related to the
imaging system point spread function (PSF). One can show
that in the case of simulated 3D images where the PSF
represents the effect of voxel partial volume, the average value
of parameter w (accounting for all possible edge directions with
respect to voxel walls) can be set to 0.437. A more detailed
description of the derivation of this value, as well as theoretical
foundation of the usage of complementary error function for
modeling the edge blur is given in [16]. To account for the
actual PSF of the imaging system, the value of w in (5) has to
be independently identified from a selected edge region.

Figure 4. Cross-section profile lines defined on the normal plane (N=8).

In the seventh step of the algorithm, the model (5) is fitted
to actual image intensity along the normal-plane profile lines
by minimizing the following error function in the (Vo, Ay, R)
parameter space

N QO

e(Vy,Ap,R)=Y > [(d,) —u(d,;Vy, A, BT

n=1 i=l

(6)

where u(.) is given by (5) and Q is the number of points
considered along each profile line direction. The image
intensity values on the normal plane are obtained via 3D
interpolation. The square root of error (6) divided by NQ is the
fitting rms error at skeleton point &, denoted by ey. Similarly,
ep (a square root of the inner sum in (6) divided by Q) is the
rms fitting error for the n-th profile. The least-squares error (6)
minimization is done numerically (and can easily be
parallelized). The resulting values of local vessel radius R; at
each skeleton point, along with the spline-approximated
centerline points are used for tubular object surface modeling.

The performance of the proposed radius estimation
algorithm is compared to the one recently presented in [7]
where the normalized Hessian eigenvector corresponding to the
smallest-magnitude eigenvalue is used to estimate the local
centerline direction and then the vessel cross-section by a plane
normal to this eigenvector. In the reference method, the radius
at centerline point £ is estimated by
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where A; is the area occupied by the tubular object after
thresholding. The threshold value in our project was equal to
the average of image intensity in a small neighborhood of the
cross-section center and the average intensity of a circle with
aradius sufficiently larger than the expected vessel radius.

III.  RESULTS

A.  Selection of vesselness filter parameters

First, the influence of the normalization parameter y on the
Hessian-based image filter response was investigated. Some of
the results are shown in Fig. 5. Each of the three diagrams
shows plots of the vesselness filter response [11,12,13,14] to
acircular object of fixed radius (R=1.5), with the centerline
parallel to the 0z axis, crossing the Oxy plane at x=50, y=50.

y=1.0
0=15

y=1.5
0=2.0
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Figure 5. The relative vesselness filter responses to a tube of radius 1.5 for
Hessian multiplied by o7; y=1.0 (left), 1.5 (middle), 2.0 (right)

As it is demonstrated in Fig. 5, the relative single-scale
responses depend on the value of y. When selecting the scale
o of the filter, the width of filtered object must be considered.
If the width of a tube is much greater than o, tube's edges are
enhanced which may lead to division of the tube region. Then,
larger scale filters (giving larger maximum response) should be
considered to prevent such region split. For greater values of o,
the tube region is blurred which in a worse case can result in
false merging of close objects. Taking into account all of these
effects, for straight tube test objects a range of scales was set to
[0.5, 4.0] and for the helix datasets the range of ¢ was [0.5,
2.5]. In both cases, y=1.5 and the values of ¢ were changed in
steps of 0.5. For the QSM data, the range [1.0,4.0] and step
0.25 were selected for o, and y=1.0 was applied to normalize
the Hessian matrix. Although in practice, the vesselness filter
parameters can be adjusted for images at hand, the issue of
optimizing the vesselness filter to obtain faithful centerline
representation still needs further research [13]. The errors of
the centerline local direction estimation due to image noise
slightly increase with reduction of vy, but this effects do not
seem to be statistically significant.

B.  Radius estimation

Errors in estimation of the centerline orientation angles
with the use of the two methods are compared in Fig. 6 for
atube image with R=1.5. The linear intensity ramp with a jump
in the middle and Gaussian noise of standard deviation = 10
were included in the tube image used for the angles estimation.
Their true values were 6=54.7°and ¢=62.0°. One can see that
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the proposed method ensures high accuracy of angles
estimation, with an error less than 1°. For the Hessian-derived
angles, the error is much larger. Both, the intensity artefacts
and noise have significant effect on the centerline orientation
estimated with the use of locally computed Hessian
eigenvectors. The error standard deviation for the reference
method can be even 20 times larger in the case of noisy
images.
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Figure 6. Estimated polar and azimuthal angles of the centerline of a tubular

object with R=1.5 (intensity linear ramp, intensity jump in the middle,

Gaussian noise of standard deviation = 10).
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The errors in measurement of tangent vector orientation
make the angle of the vessel cross-section plane different from
normal to the centerline. This affects the shape of the tubular
object intersection with this plane and causes errors in the
vessel radius estimation. A number of experiments were
carried out using the synthesized tube images with different
artefact and noise to quantify those errors. The results of these
experiments are presented in Table [ and Table II. Since there
is not much difference between effects of brightness and
contrast artefacts on the radius estimation errors, the case of
images with a linearly varying contrast and the intensity jump
is presented in the Tables only. The symbols g0, g10, g20 and
230 refer to Gaussian noise standard deviation, respectively of
0, 10, 20, and 30, compared to [0,650] range of the simulated
3D image intensity.

TABLE L. MEAN VALUE AND STANDARD DEVIATION OF AN ERROR IN
ESTIMATING STRAIGHT TUBES RADII BY MEANS OF THE PROPOSED ALGORITHM
g0 g10 220 230
R mean  stdev | mean stdev | mean  stdev | mean stdev
1.0 | 0.012 | 0.040 | 0,016 | 0,055 | 0,006 | 0,076 | 0,002 | 0,122
1.5] 0.048 | 0.024 | 0,045 | 0,042 | 0,046 | 0,067 | 0,048 | 0,118
251 0.053 [ 0.019 | 0,053 | 0,029 | 0,065 | 0,056 | 0,056 | 0,066

As it can be seen in Table I, the absolute mean value of the
error experienced with the proposed algorithm does not exceed
the value of 0.1 in any considered case. The error standard
deviation increases with the standard deviation of the image
intensity noise. Still its values are not larger than a fraction of
the voxel edge length; apparently a subvoxel accuracy is
achieved with the proposed radius estimator.



TABLE II. MEAN VALUE AND STANDARD DEVIATION OF AN ERROR IN
ESTIMATING STRAIGHT TUBES RADII BY MEANS OF THE REFERENCE

ALGORITHM
g0 e10 220 230
R mean stdev | mean | stdev | mean stdev | mean stdev
1.0 | 0,326 | 0,210 | 0,402 | 0,324 | 0,829 | 0,411 |-1,237 | 0,319
1.5 | 0,052 | 0,041 | 0,005 | 0,039 | 0,014 | 0,087 |-0,071 | 0,133
2.5 | 0,151 | 0,070 | 0,224 | 0,072 | 0,268 | 0,082 | 0,329 [ 0,074

The errors are definitely larger in the case of the reference
formula (7), based on Hessian eigenvector centerline
orientation and implemented after [7]. It follows from Table II
that the magnitude of the mean error is largest for thin tube
(R=1.0). This error is comparable to the radius value itself.
More detailed inspection (not shown here) indicates that in the
region of the image intensity jump the error may exceed the
true radius value even a few times. The mean error decreases
for a thicker tube (R=1.5) and increases again for R=2.5 which
may be related to a systematic error introduced by the threshold
selection algorithm.
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Figure 7. Image model (3) least-squares fitted along N=8 profile lines to the
simulated image of R=1.0 tube passing through the intensity jump, w=0.437.
The negative values of d correspond to the distance measured from centerline
to the object edge in the direction of the tails of the arrows shown in Fig. 4.

Comparison of the tube radius estimation by the two
considered methods (Table I and Table II) indicates that the
proposed estimator does not depend, in practice, on the
intensity and contrast variations, including intensity jumps.
This robustness to the image artifacts can be explained by
noting that the radius estimation is obtained through fitting the
edge blur model (5) to the image values. The fitting is an
adaptive process which involves adjustment of three
parameters — (Vo, Ay, R). In the places of varying intensity (due
to its jump or slow variation) the parameters Vy and A, are
adjusted accordingly. The information about the edge location
(and thus R) is included in the actual, rather steep, transition
between the inside (V5+Ay) and the outside (Vo) intensity of the
tubular object. The location of this transition is only slightly
affected by those two intensities, and therefore they have little
effect of the radius estimation. This is illustrated in Fig. 7
where the tube profiles stay almost independent of the
background intensity jump.
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Figure 8. Radius of a helix (r=1, ¢=0.1, linear intensity with a jump, noiseless
image) estimated using the proposed algorithm.

1 mean =0.025

Radius estimation errors ’

1.5

Helix radius, reference algorithm

Radius

mean =0.171 | mean =-0.121
‘—‘ rms =0.169 '——'

0.5

20 40 60 80 100

Distance along centerline, |

120

Figure 9. Radius of a helix (r=1, ¢=0.1, linear intensity with a jump, noiseless
image) estimated using the reference algorithm.

The superior accuracy of the proposed algorithm was also
confirmed by helical objects radius estimation (Figs. 8 and 9).
Again, a subvoxel accuracy is achieved with the proposed
algorithm as the true radius changes from 1.0 to 1.9 along the
helix centerline. In Fig. 9, showing the performance of the
reference method, much larger differences are observed. Again,
the image artifacts have significant effect on radius estimated
by the reference algorithm, with practically no effect on the
proposed method result. The images of a high-curvature helix
object (Fig. 2) can also be used to explain the superiority of the
proposed technique in terms of accurate approximation of the
centerline local direction, compared to the locally computed
Hessian eigenvectors. This is illustrated in Fig. 10 where the
staircase-like plots of the helix skeleton are shown next to
smooth curves representing the tangent vector components
computed from spline-approximated functions (4). One can say
the knowledge included in the shape of the skeleton 3D curve
is utilized in the proposed algorithm to make it more accurate
in predicting the tangent vector orientation than the local
Hessian eigenvalues.
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Figure 10. Helix skeleton coordinates (left) and tangent vector components
(right) estimated with proposed algorithm [noisy (g30) image with artifacts].

To extract the skeleton of the major vessels visualized in the
brain QSM image, thirteen Frangi-vesselness images were
computed [11], respectively using ¢=1.0,1.25,...,4.0. The
Hessian was multiplied by o7, y=1, prior to eigenvalue analysis.
The maxima across scales were selected for each voxel to make
the vesselness image, thresholded at 8% of the maximum, and
skeletonized.

Figure 11. Visual presentation of selected surface-triangulated smoothed
tubular branches extracted from the QSM brain image in Fig. 3.

The R-centerline data vectors computed for the parsed
skeleton branches were used for visual rendering as tubes of
triangulated surface (Fig. 11). Smoothed R-centerline profiles
were used to compute the relevant .stl files. The tubes
representing bifurcating branches were joined together as
logical union of their slightly extended meshes. Further work is
under way to evaluate accuracy of the MRA-derived vessel
model using properly designed flow phantoms [17].

IV. CONCLUSION

A centerline-based method for automated estimation of the
radii of tubular blood vessel segments, basing of their raster 3D
images was designed. It was validated with the use of
simulated 3D images and applied to 7 T QSM brain vasculature
volumes. Its robustness to noise and artifacts is achieved
through effective tuning of vesselness filters, further
strengthened by spline centerline approximation of the binary
skeleton — for accurate tangent vector estimation. Least-squares
fit of the intensity profiles over normal-plane cross-sections
gives reliable radius estimation along centerline. The value of
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the residual error provides clues on discrepancies from the
assumed circular symmetry (active contours can be applied in
such cases), and for the presence of bifurcations. The radius-
centerline datasets were used for blood vessel branches
visualization and modeling for blood flow simulation.
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