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Abstract-Quantitative modeling of brain vasculature is im­
portant for diagnosis of vessel pathologies as well as for surgery 
treatment planning. Magnetic resonance angiography (MRA) 
provides reliable visualization of vessel tree structure and its 
organization. Accuracy of vessel segmentation from MRA is 
an important step in model building; its accuracy influences 
obtained model quality. This paper presents three level set based 
segmentation approaches, including one that represents original 
authors contribution. These methods are combined together with 
vessel ness function estimated for analyzed images. Presented 
algorithms were applied both for artificial and real brain 3D MR 
images. Analysis results along with discussion are also included. 

I. INTRODUCTION 

Extraction of the vascular network from magnetic reso­

nance image is very significant in diagnosis and therapy 

of circulatory system. Analysis of MRA images provides a 

quantitative description of vessels architecture. Furthermore, 

the obtained model of vessels allows diagnosing lesions of 

vascular network, such as stenosis. 

A number of imaging modalities are implemented for angio­

graphic images acquisition. Basic approach is based on radio­

opaque contrast agent and X-rays used for imaging. However, 

the method is invasive and nowadays may be displaced by MR 

imaging with the help of specific angiographic sequences e.g. 

time of flight (ToF). Modern scanners (with 3T magnetic field) 

approaches in image resolution to the X-ray based computer 

tomography. As a result, obtained images enables visualization 

of small-diameter blood vessels « 1 mm). Thus, high quality 

quantitative models can be build based on extracted vascula­

ture. 

There are several methods used for segmentation of brain 

blood vessels. They can be divided into 3 groups. First one 

comprises methods of image processing, e.g. scale-space or 

mathematical morphology filtering, finding skeleton of blood 

vessel structure [1], [2], [3]. Another group uses mathematical 

modeling of the image, e.g. through fitting parameterized 

hypersurfaces to the shape of veins or arteries. These methods 

use active contours or level sets [4], [5], [6], [7]. The third 

group is based on a priori knowledge about the blood vessel 

system, collected in anatomical atlases [8]. Such atlases serve 

as certain reference patterns used for presentation and evalua­

tion of the results of segmentation of the vessels obtained for 
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diverse individuals. Reviews of the methods of blood vessel 

image segmentation can be found in literature [9]. Despite of 

much effort in the field of MRA image analysis, the problem 

of precise segmentation of the vascular network from MRA 

is still unsolved. On the other hand the segmentation is a 

crucial step since its accuracy directly influences the quality 

of vasculature model obtained in further analysis. Quantitative 

description of the model will provide information on vessel 

tree geometry like e.g. diameter of individual vessels and their 

volume. 

The interest in level set based segmentation algorithms has 

grown recently, as a result of relative high speed of these algo­

rithms execution and the method ability of accurate modeling 

of complex shapes of the blood vessels. These methods are 

often used as one of the stages of the segmentation procedure 

[10], [11]. This work is aimed at comparison and development 

of a number level set based segmentation method. We also 

focus on some preprocessing techniques applied to the image 

before the segmentation takes place. Moreover, the article 

describes our own extension of the LS approach. As a level 

set function we implement Chan-Vese mathematical model 

[12], widely used for blood vessel extraction. Prior to the 

segmentation, two preprocessing patches are applied: Hessian 

filtration [7] and estimation of gradient vector flow (GVF) 

[13]. The latter is used to emphasize image gradients thus 

making vessel extraction more efficient.Next, for preprocessed 

image vessel ness function (V F) [6] is estimated. It emphasizes 

tubular structures in the image making vessel extraction more 

reliable by following segmentation algorithms. Finally, the 

LS segmentation is performed. Flowchart of image analysis 

is presented in Fig. 1. LS 1 means segmentation based on 

classic Chan-Vese level set model only. LS2 corresponds to 

solution proposed by Forkert [14]. It considers additional 

energy term added to LS functional to ensure more accurate 

vessel extraction. LS3 indicates our proposal, that extends 

Forkert approach to muliscale analysis. 

II. MATE RIALS AND ME T HODS 

A. Analyzed images 

To evaluate performance of candidate image segmentation 

techniques, from qualitative as well as quantitative points of 

view, more realistic numerical phantoms were designed. To 



Fig. 1: Block diagram of image analysis steps 

Fig. 2: MIP of original MR brain image 

model real-world vessel trees, cylinders of different diameters 

were connected together. To generate such vascular tree im­

ages, the computer simulator of tree growth was developed and 

implemented [15]. The tree consists of 4000 outlet branches 

and each tree image had a size of 256x256x256 voxels. Tree 

image was corrupted by the Gaussian noise with zero mean 

and standard deviation (J2 = 6. 

Volunteer brain data were acquired by using the TOF-SWI se­

quence in Friedrich Schiller University in Jena, Germany. Sig­

nal intensity changes occur along the slice encoding direction 

due to merging of the slabs and by e.g., applying of a ramped 

rf-pulse (TONE pulse). Furthermore, signal inhomogeneities 

are introduced by data acquisition with multiple receiving MR 

coils and combining of the different MR channels using the 

sum of squares reconstruction. These effects are shown in 

Fig. 2; if not handled, they can deteriorate the quality of 

further processing [16]. To remove signal intensity artifact 

the histogram equalization-based procedure was applied [17]. 

Corrected image is shown in Fig. 3. 

B. Vesselness function (VF) 

The purpose of vessel ness function is to enhance vessel 

structures with eventual goal of vessel segmentation [7].The 

vessel enhancement is a filtering process that searches tubular 

structures in image. The detection of vessel is based on 
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Fig. 3: MIP of the brain image after contrast nonuniforrnity 

correction 

analysis of second order information (Hessian) obtained by 

image convolution with second order Gaussian derivatives. 

The scale in this filtration is established by parameter s in 

Gaussian derivative equation. Hessian matrix is calculated for 

every voxel in the three dimensional image. Comparison of 

eigenvalues of this Hessian matrix to certain values is used for 

detection of tubular structure. The vessel ness function equation 

for one scale s is presented in [6]. Calculating the VF for many 

scales and selecting the maximum value for each scale enables 

emphasizing of vessel branches with different diameters [6]. 

C. Gradient vector flow (GVF) 

This approach was proposed in [13] to solve problems 

associated with initialization and poor convergence of active 

contour algorithms. GVF is an external force computed as a 

diffusion of the gradient vectors of a gray-level or binary edge 

map derived from the image. The GVF is defined as the vector 

field Vex) that minimizes: 

E(V) = J J J tLlV'V(x)12 + IV'I(xWIV(x) - I(xWdx (1) 

where x represent voxel coordinates, and tL is a regularization 

parameter adapted according to the amount of image noise. 



The GVF results in image smoothing where the initial vec­

tor magnitudes are small, while keeping vectors with high 

magnitude nearly equal. In practice, the GVF preserves even 

weak structures while being robust to large amounts of noise 

[8]. In [18] GVF approach was proposed for detecting of 

tubular objects (including blood vessels) without the need for a 

multi-scale analysis (by means of Hessian filtering). Reported 

advantage when compared to multiscale filtering was more 

precise detection of thin structures laying close each other 

avoiding diffusion of nearby structures into one another. The 

GVF was combined together with Frangi vesselenss function 

and applied both to artificial as well as to CT angio images 

providing accurate segmentation results [18]. 

D. Chan-Vese Level-Set method 

Level-set method based on Chan-Vese mathematical model 

is versatile and widely used in biomedical image segmentation. 

The main idea in level set active contour model is to iteratively 

evolve a curve that is controlled by some parameters estimated 

from the image. The motion of the curve is obtained by solving 

the curve evolution partial differential equation (PDE) [12], 

adapted to three-dimensional data space. Finally, the curve 

ends its evolution by fitting to objects boundaries within the 

given image. This method is an energy minimalization based 

segmentation. The two dimenstional PDE is presented in Chan 

and Vese paper [12]. 

E. Improved LS model 

In this method proposed by Forkert in [14] a vessel­

ness function is estimated, which quantifies the likeliness 

of each voxel to belong to a bright tubular-shaped structure 

as, described in subsection B. Level set model is extended 

by applying the weights of the internal energy, which are 

locally adapted based on the vesselness function information. 

The main idea of Forkert approach is to bias the internal 

depending on differences between directions of level set 

function expansion and the main eigenvector extracted from 

vesselness function. This eigenvector point at local vessel 

directionality. When the angle between eigenvector and level 

set gradient is small, then this term is high encouraging further 

LS hipersurface evolution. Otherwise, it blocks LS expansion 

outside the vessel, as shown in Fig. 2. Moreover, there is 

also anoter term representing a vessel ness force added to level 

set equation. This additional energy term is used to actively 

drive the contour along the vessels. In this paper we adapted 

the equations presented in [14] to the Chan-Vese level set 

algorithm. 

(2) 

Where Ee (¢) and internal energy Ei (¢, w¢) with vessel ness 

dependent weight. Third term v( ¢) is the vessel ness force. The 

external energy equation does not change and it is the same 

as equation presented in [12]. However, the internal energy 

implements the additional weight w¢. Extended internal energy 

equation used in this method is presented below. 

Ei(¢,w¢) = l IIW¢\7H(¢(x))lldx (3) 
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The w¢ in this equation is used to adapt the weight of the 

internal energy depending on the angle a between eigenvector 

el, which is the first eigenvector obtained from Hessian and 

\7 ¢. The w¢ is obtained by: 

w¢(x) = J.L. (1 - cos(a(x))) 

where the cosine is estimated by: 

el . \7¢ 
cos(a(x)) = 

Ilelll .II\7¢11 

(4) 

(5) 

The scaling parameter J.L is defined in [12] as curve length. 

If one needs detection of as many objects as possible with 

different sizes, then J.L should be small. If larger objects should 

be detected only (for example objects formed by grouping), 

then larger J.L should be selected. According to that, when 

the cosine in (4) is close to 1 (eigenvector and gradient are 

parallel) w¢ parameter will be close to O. Otherwise, it will 

be equal to the preset value. 

The energy functional v( ¢), which includes a vessel ness force 

term is defined as: 

v(¢) = wV 1 H(¢(x))cos(a(x)) JV(x)dx (6) 

The weight of this term is highest in case a is close to 

OOor 1800and for large vessel ness values forcing a level set 

evolution towards tubular structures [14]. 

F Proposed modification 

Method proposed by Forkert is very useful for segmenta­

tion of network, which consist of vessels with similar radii. 

However, the real vasculature contains vessels with different 

diameters. Thus multiscale approach is needed to correctly 

emphasize vessels with different size in the vesselness func­

tion. Thus, VF should be calculated for multiple Hessian filters 

with different sigma. Selection of number of implemented 

filters and their corresponding sigma values depend on vessel 

radii variation in the analyzed image. Moreover, the multiscale 

effect should be also reflected in weight estimation (4). This 

means that eigenvector el that corresponds to the largest 

eigenvalue of hessian matrix should be also estimated for each 

of considered scales s. Then, the vesselness function equation 

will be modified as follows. 

Vmax(x) = max (V(x, s)) 
Srrvin <s<srnax 

(7) 

The Vmax(x) The Vmax(x) value is calculated for every 

voxel in the image and further used for estimation of the ves­

selness force in equation (5). Furthermore, this value is used 

to establish the eigenvector el for calculation of cos(a(x)). 
The el are evaluated for every filtration scale. For calculation 

of internal energy weight, the el vector corresponding to 

the Vmax(x) value is used. The el estimated for optimal 

scale should be parallel with \7 ¢ inside the vessel and al­

most perpendicular outside. Proposed solution should adjust 

the w¢ weight appropriately. Combining this with modified 

vesselness function (estimated for multiscale filtering thus 

taking maximum values for every image voxel according to 



the optimal scale) should lead to improved segmentation when 

compared to approach suggested in [14]. Presented method 

was implemented in C� programming language as Windows 

application. 

III. RESULTS 

Fig. 4: MIP of distorted artificial tree image 

Fig. 5: Result of HF + VF + LSI 

Artificial tree image was analyzed according to diagram 

shown in Fig. 1. Its maximum intensity projection is shown 

in Fig. 4. Next, Hessian filtering (HF) for scales 0.4 and 0.8 

was performed. Independently, GVF were also evaluated. For 

both preprocessing results VF was estimated. Obtained images 

were fed into 3 versions of LS approach: original Chan­

Vese model (LS 1), Forkert modification (LS2), and finally, 

our approach (multiscale version of Forkert approach, LS3). 

MIPs of segmentation results obtained for these methods are 

shown in Figs. 5-8. After segmenting the image processed 

by GVF with LSI technique it was found that in this case 

thick branches are not processed correctly (only vessel walls 

are detected leaving empty space inside). This is explained by 

properties of GVF operator that emphasizes image gradients 

Fig. 6: Result of GVF + VF + LSI 

Fig. 7: Result of HF + VF + LS2 

Fig. 8: Result of HF + VF + LS3 
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Fig. 9: Result of HF + VF + LS 1 

and reduces areas with slowly varying brightness (like internal 

vessel part). Since this effect leads to imprecise detection 

of thick vessels, LS2 and LS3 techniques were not applied 

for GVF image. For quantitative evaluation of segmentation 

results, the Jaccard coefficient was estimated. It expresses the 

similarity between segmented image and binarized version of 

undistorted tree phantom. Its value varies from 0 to 1 where 

the highest one represents the perfect segmentation. J values 

are given in Table 1. 

TABLE I: Estimated J coefficients for different preprocesss­

ing/segmentation methods 

Method Jaccard 
HF + VF + LSI (Fig. 5) 0.43 
GVF + VF + LSI (Fig. 6) 0.52 
HF + VF + LS2 (Fig. 7) 0.58 
HF + VF + LS3 (Fig. 8) 0.64 

Second test was performed on MR ToF image after contrast 

artifact correction. The same preprocessing was applied as in 

the case of tree image (VF estimation followed by Hessian 

filtering and GVF evaluation). Then LSI , LS2 and LS3 seg­

mentation approaches were used. For the same reason, LS2 

and LS3 were not applied to the GVF processed brain images. 

Analysis results are presented in Figs. 9-12. 

IV. DISCUSSION AND CONCLUSION 

Results obtained for tree image shows that there is continu­

ity of detected blood vessels in most cases. The only exception 

is LSI where a number of thin vessels are not connected each 

other. Also, in all cases the noise does not distorted obtained 

vessel structure. LS2 outperforms LSI providing more accu­

rate detection of thin vessels. It can be explained by additional 

energy term added to the LS model. This energy, represented 

by vesselness function helps the level set curve in better fitting 

Fig. 10: Result of GVF + VF + LS 1 

Fig. 11: Result of HF + VF + LS2 

Fig. 12: Result of HF + VF + LS3 
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to the original vessel shape. For similar reason, LS3 provides 

even better result by considering multiscale vessleness func­

tion. It provides more accurate vessel representation when 

analyzed tree branches differ in their diameter. The price paid 

for emphasizing of thin vessels by vesselness function is vessel 

thickening; this is especially visible for GVF-processed image. 

Described effects are reflected in J values (Table 1) obtained 

for different segmentation approaches, indicating LS3 as a 

most accurate one. 

Evaluation of brain image segmentation can be done by visual 

assessment only. However, partially similar effects can be 

observed as in the case of tree images segmentation. LS 1 

results in good detection of thick vessels, however a number of 

thin ones are omitted. Also, the continuity of some fragments 

of vessel network is lost. Application of LS2 significantly 

increases amount of thin vessels detected, however on the same 

time artifacts appear. This is emphasized by LS3: increased 

number of thin branches when compared to LS2, but also a 

presence of a number of artifacts in resulting image. Advan­

tage of LS3 over LS2 lays also is in more continuous network, 

see marked fragment in Fig. 11 and 12. The GVF-based 

result shows a big disadvantage of this method - it detects 

a lot of artifacts as a result of image gradient enhancement 

(in ToF images, beside the vessels, other tissues are also 

partially visible).These artifacts are further removed by VF 

but, unfortunately, together with vessels with small diameters. 

Thus fragments of thick vessels are detected only, along with 

artifacts of larger size. 

For both artificial tree image and MR brain image Forkert 

modification outperforms classic LS approach. However, seg­

mentation accuracy strongly depends on filter scale. Its high 

value can cause thickening of vessels with small diameter. 

On the other side, selection of to small scale does not detect 

vessel inner part, especially when branch diameter is large. 

This problem is partially solved by our approach. Introduction 

of energy term to the LS model that considers multiscale 

vesselness function enables correct detection of branches with 

different diameters. This leads to better characterization of 

segmented vasculature resulting in more precise brain vessel 

geometric model. 

To further improve detection of blood vessels, there is a need 

to eliminate of artifacts that distort segmentation results. An­

other problem to be solved is continuity monitoring of detected 

vessels. Analysis results should be verified on digital vessels 

phantoms obtained by means of simulated MR angiography 

[19]. Preliminary segmentation results were considered by 

radiologist as promising, however further examination is much 

needed. All above issues will be topics of further research. 
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