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Abstract—The simulation of X-ray images can be computed
efficiently using raytracing, a technique well established in 3D
computer graphics and rendering. Since raytracing is a discrete
technique it is prone to aliasing artefacts. However, irregular
sampling is able to mitigate this problem. In this paper the
influence of the probability density function of the sampling
process on the reconstructed spectral density is described. It
is demonstrated that irregular sampling can be used in X-ray
imaging simulation to reduce the impact of aliasing.

I. INTRODUCTION

X-ray imaging simulation is an important step in develop-
ment between construction and prototyping of X-ray imaging
systems. It can be used to estimate the quality of the imaging
process and to confirm the geometry of the setup without
costly and time-consuming series of tests. This could be
achieved by modeling the interactions at subatomic levels.
While this would guarantee realistic results, such kind of
calculations would be very time consuming. Instead, raytracing
uses a more macroscopic approach of interpreting radiation as
discrete rays and calculating their interaction with physical
properties of materials, like absorption. Since raytracing is a
discrete process the effects of sampling and aliasing have to be
considered. It is well known that this problem can be mitigated
by irregular sampling where the sampling points probability
density function (pdf) influences spectral density and noise of
the reconstructed images [1].

The remainder of this paper is organized as follows: In
Section II the principles of raytracing are described. In ad-
dition, the differences between raytracing used for rendering
photorealistic images and the application in X-ray simulation
are shown. Section III describes sampling, the differences
between regular and irregular sampling as well as the impact
of using different sample point distribution functions. Finally,
in Section IV these effects are demonstrated by some examples
and simulated X-ray images rendered with different sampling
distributions are depicted.

II. RAYTRACING

Raytracing is a technique for rendering photorealistic im-
ages well known in computer graphics. The basic algorithm
is based on the idea of emitting rays of light into a 3D scene
beginning at the eye point [2]. If an object is hit by a ray,
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the intensity and color of the corresponding sensor point is
calculated depending on the properties of the 3D object. Figure
1 illustrates this basic concept of raytracing.
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Fig. 1. Schematic of Raytracing

In case of X-ray imaging simulation, the structure differs
from the above-mentioned concept. In X-ray laminography [3]
the X-ray sensor is contained in a base plate and the X-ray
tube is mounted above it. The irradiated volume moves with
constant speed through the area between source and sensor as
shown in figure 2.
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Fig. 2. Raytracing in X-ray imaging

Contrary to the ordinary raytracing, the rays are limited in
length between the sensor and the source. In addition, in X-ray
imaging the transmission of radiation through the volume and
its interaction with materials is evaluated, and for applications



in industrial quality ensurance the objects are large enough to
prevent refraction. Initially it is also assumed that there is no
scattering in the X-ray propagation. In industrial applications
monochromatic X-ray tubes are not used, therefore absorption
has to be calculated depending on the photon energy of the
X-rays.

The irradiated volume has to be represented in such a
way that the path of a ray through different materials can
be calculated. One possibility is that the volume consists of
homogenous primitives each containing a specific material.
These could be simple primitives, e.g. cuboids, bowls, trian-
gles, but also complex forms like Non-Uniform Rational Basis
Splines (NURBS). Another way to describe the volume is to
model it as a set of finite volume elements (voxel). This, in
fact corresponds to breaking down the volume into many very
small cuboids consisting of homogenous materials. The latter
is much more prone to aliasing than the first.

III. SAMPLING DISTRIBUTION FUNCTIONS

Sampling is the process of converting analog into discrete
functions. If a bandlimitted analog function is sampled with
a sufficient set of equally spaced points, both representations
contain the same information and can be mutually converted.
The error which appears due to spectral overlapping when
using too less sampling points is called aliasing. By irregular
sampling the aliasing artifacts can be replaced by broadband
noise which is less visible for human eyes [4]. The following
four different sampling point distributions will be considered:

o regular point sampling

« uniformly distributed point sampling

« Poisson-disc sampling

o jittered-grid sampling

The sampling point pdf and its effect on the spectrum of
the sampled function will be discussed for the 1D case since
it is easier to comprehend these results than in the 2D case.

A. Regular point sampling

Regular point sampling is the well known case of sampling
in signal processing. The sampling positions are equally
spaced with uniform distance 7. In this case the sampling
function a(t) can be written as

a(t) = i 5(t—v-Ty) (1

v=—0o0

where d(¢) denotes the Dirac delta function.
The spectrum of the sampling function A(f) can be cal-
culated using the Fourier transform of the sampling function

(1):
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Anticipating random sampling, the regular case can be
written as a random point process, where the random variable
dat denotes the intervals between sampling points with the
pdf fas,. Thus, the regular point sampling process can be
described by the pdf

Fand(At) = 8(AL —Ty). 3)

Using this consecutive sampling point distances, the ab-
solute sampling points 7; can be calculated by the sum of
previous distances

i
7= daty “
v=0

which can now be used to rewrite the sampling function (1)
as

alt)= Y 8(t—m). 5)

i=—00

This form is useful to determine the spectrum of a sample
function of this random process by using the Fourier transform
and the shifting property of the Dirac delta function:
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(6)

Figure 3 shows a segment of the regular sampling function
and its magnitude spectrum. This magnitude spectrum is
calculated according to equation (6) for a finite number of
1000 sampling points. Therefore, such a magnitude spectrum
my differ from the theoretical spectrum, e.g. given by (2).
However, it can be seen that the periodicity in the time domain
also shows up in the frequency domain.
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Fig. 3. Segment of the sampling function and magnitude spectrum

From |A(f)| of figure 3 it is obvious that the Nyquist-
Shannon sampling theorem states that a bandlimited signal
has to be sampled with a sampling frequency at least twice as
high as the maximum signal frequency to avoid aliasing.



B. Uniformly distributed point sampling

Uniformly distributed point sampling is a nonregular sam-
pling process with sampling points randomly distributed. This
can be described by a point process which generates inde-
pendent sampling points with an exponential pdf of the point
distances [5]:

L a—AAL A
fdmmt){A SR ™

0, else

The rate parameter A controls how many points are expected
per time interval. Since this is a random process it is illustrative
to consider a sample function of this process. Figure 4 shows
such an example function and its magnitude spectrum.
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Fig. 4. Segment of an example of the uniformly distributed sampling function
and magnitude spectrum

The sampling function shows two conspicuous character-
istics: First, there is no regularity in the distribution of the
samples. Second, there are some rather large gaps between
two points, but also some sample points that are located very
close together. This influences the spectrum of the sampling
function. It has a DC peak but at all other frequencies there is
a noise floor only. Due to the lack of regularity in the sampling
function there are no replicas in the spectrum of the sampled
signal. Therefore, no aliasing artefacts will be visible, they are
replaced by additional broadband noise.

C. Poisson-disc sampling

The basic idea behind Poisson-disc sampling is to prevent
the sampling points from getting too close to each other.
The use of this sampling point distribution is inspired by the
structure of mammal eyes. YELLOT published in 1983 that the
extrafoveal cone density in a rhesus monkey retina is smaller
than it has to be to satisty the sampling theorem [6]. But
these cones are placed in a Poisson-disc distribution, reducing
the visible noise below that expected as a consequence of
the violation of the sampling theorem. The minimum distance
condition can be achieved by modifying the pdf (7) of the
sampling distances:

A-emAAE M AL > ¢

faa (AY) = { ®)

0, else
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Figure 5 shows a sample of the Poission-disc sampling
process. In this case the minimum distance of the sampling
points is chosen to be three-quarters the regular sampling
interval, i.e., tg = 0.75 - T}.
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Fig. 5. Segment of a sample function of the Poisson-disc sampling function
and magnitude spectrum

As intended the sampling points are not closer than 0.75-74.
As a consequence the noise floor at low frequencies is low. At
high frequencies the noise level is as high as it would be in the
uniformly distributed case. This fact predestinates Poisson-disc
sampling if it is intended to sample non-bandlimited signals
for human eyes, since human eyes are more sensitive to low
frequency noise than to high frequency noise. The amount
of noise reduction in the low frequency range and the exact
appearance of the noise figure changes with the minimum
distance to. The noise figure varies with the sampling pdf, but
the overall noise level does not change [4]. It only depends
on the average number of sampling points per unit.

D. Jittered-Grid sampling

The idea behind jittered-grid sampling is to break a regular
grid by jittering the sampling positions randomly. The advan-
tage of this approach is the simplicity of calculation. In this
case bias free uniformly distributed jitter 7y of the width w is
added:

(J,(t) =Ty io: 6(t— vy -|—TL_|)
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In figure 6 an example of a jittered-grid sampling function
with uniform jitter of width w = T} is shown.

The magnitude spectrum of the jittered-grid sampling func-
tion shows very low noise at low frequencies but the noise
level reaches the uniform noise level at lower frequencies
than for Poisson-disc sampling. Interestingly, there will be
attenuated peaks at multiples of the sampling frequency if the
amount of jitter is too small. This will then cause aliasing
artefacts.

It is also possible to use other jitter distributions like
normally distributed jitter. They may have other impacts on
the spectrum and need to be evaluated in further studies.
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Fig. 6. Segment of an example of the jittered-grid sampling function and
magnitude spectrum

IV. IMPLEMENTATION

To compare these four sampling distribution functions they
are used in a simple X-ray imaging simulator as shown in
figure 2 and implemented in MATLAB. A mono-energetic
X-ray point source is assumed which irradiates a volume,
consisting of 512 x 512 x 512 voxels. The volume was
generated by the function phantom3d.m [7].

The target resolution of the sensor is 200 x 200 pixels. Since
the reconstruction of irregularly sampled images is nontrivial,
the images are rendered at higher sampling densities and
reconstructed by using a multistage box filter as described by
MITCHELL [8]. The Poisson-disc samples are generated by the
function generate_poisson_2d.m [9]. At the target minimum
distance of 0.75 - Ty, where 1y corresponds to the distance
of two regular sampling points on the axis, 384343 sampling
points are generated which corresponds to an oversampling
factor of about 9.6. Correspondingly, the same number of
sampling points is applied to uniformly distributed sampling.
For regular sampling 620 x 620 = 384400 regularly spaced
sampling positions are used. For jittered-grid sampling these
sampling positions are jittered by the full distance of the
sampling points w = 1.

In this basic simulator a ray only hits one voxel per voxel
layer. At flat angles it is possible that a ray can penetrate more
than one voxel per layer which could cause additional errors.
In the simulator used here the angles of the rays to the central
ray are relatively small so this effect can be neglected.

In the consecutive simulated X-ray images are shown ren-
dered using the four different sampling distributions. Figure
7 shows a section of the sensor image using regularly spaced
sampling.

In this regularly rendered image prominently visible lines
appear. They are due to aliasing effects which can not be
suppressed by oversampling and filtering. Apart from that the
image containes only little noise.

In figure 8 the sampling points are uniformly distributed.

This picture shows no visible aliasing artefacts. Compared
to the regularly sampled image the noise floor is higher. The
black pixels are caused by a lack of sampling points in the
area of this pixel. Since the sampling positions are uniformly
distributed it is not impossible that there are no sampled values
within a pixel.
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Fig. 7. Phantom rendered with regular sampling

Fig. 8. Phantom rendered with uniformly distributed sampling

Figure 9 shows the same scene rendered with Poisson-disc
distributed samples.

In this image neither black pixels nor aliasing artefacts
are visible. The noise is also less noticeable compared to
uniformly distributed sampling. Because of these properties
Poisson-disc sampling is prefered in rendering.

In figure 10 the section rendered with jittered grid sampling
is depicted.

Here too, neither visible aliasing effects nor black pixels
appear. However, compared to Poisson-disc sampling full
distance jittered grid sampling results in an image with more
visible noise.

V. CONCLUSION

Raytracing is an effective way to calculate simulated X-
ray images. Aliasing artefacs can be replaced by broadband
noise through irregular sampling. This noise can be made
less visible for human eyes by Poisson-disc sampling. The
reconstruction problem of irregular sampled images is not



Fig. 9. Phantom rendered with Poisson-disc sampling

|

Fig. 10. Phantom rendered with jittered-grid sampling

finally solved. Optimized parameters and sampling pdfs have
to be investigated in further studies.
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