

Laboratorium układów wielkiej częstotliwości

Ćwiczenie nr 1

Analizator Obwodów

Laboratorium opracowano w ramach programu TEMPUS JEP 9883-95

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z obsługą analizatora obwodów HP 8753D oraz z podstawowymi procedurami pomiaru i kalibracji wykonywanymi z wykorzystaniem tego analizatora.

Wprowadzenie

Analizator obwodów jest urządzeniem przeznaczonym do pomiaru parametrów odbicia i transmisji (współczynników macierzy S) mikrofalowych linii transmisyjnych oraz czynnych i biernych układów mikrofalowych. Zakres częstotliwości analizatora HP 8753D wynosi od 30 kHz do 3 GHz. Analizator ten posiada dodatkowo wbudowany moduł umożliwiający dokonanie pomiaru odpowiedzi impulsowej badanego układu w dziedzinie czasu. Pomiary takie mają zastosowanie np. przy projektowaniu filtrów, linii opóźniających lub anten mikrofalowych.

Na rys. 1 pokazano przedni panel analizatora. Znaczenie zaznaczonych bloków klawiszy funkcyjnych oraz innych elementów panelu jest następujące:

1. Przełącznik zasilania.

- **2. Ekran analizatora.** Pokazuje mierzone wartości parametrów w postaci wykresów, nazwy opcji uruchamianych za pomocą zestawu klawiszy umieszczonych obok wyświetlacza oraz inne informacje generowane przez analizator.
- 3. Zespół klawiszy do wyboru odpowiednich menu i uruchamiania opcji wyświetlanych na ekranie.

- **4. Blok wymuszeń.** Przyciski tego bloku pozwalają na wybór m.in. częstotliwości i mocy wewnętrznego generatora oraz innych parametrów związanych ze sterowaniem tego generatora.
- **5. Blok odpowiedzi.** Przyciski w tym bloku pozwalają na wybór opcji związanych z wyborem pomiaru i kontrolą procesu wyświetlania danych na ekranie.
- **6. Wybór aktywnego kanału pomiarowego.** Analizator wyposażony jest w dwa niezależne kanały pomiarowe, kanał aktywny wybierany jest za pomocą jednego z dwóch przycisków.
- **7. Blok wprowadzania danych.** Za pomocą przycisków umieszczonych w tym bloku dokonuje się wprowadzania danych do analizatora oraz steruje się znacznikami.
- **8. Blok kontroli stanu analizatora.** Klawisze umieszczone w tym bloku odpowiadają za sterowanie analizatorem niezależnie od wyboru kanału. Między innymi można uruchomić następujące funkcje analizatora:
 - zapis wyników pomiaru i stanu analizatora na dyskietkę,
 - procedury autotestujące,
 - tryb pracy z wykorzystaniem zewnętrznego źródła sterowania,
 - pomiary w dziedzinie czasu,
 - sterowanie magistralą HP-IB
- **9. przycisk PRESET**. Wciśnięcie tego klawisza powoduje zaprogramowanie analizatora zgodnie z nastawami określonymi fabrycznie. Nastawy te mogą być przedefiniowane przez użytkownika.
- **10. PORT 1 i PORT 2.** Dwa niezależne kanały analizatora. Dostarczają sygnały sterujące do badanego układu i odbierają sygnał będący jego odpowiedzią.
- **11. Wejście zasilania sondy**. Poprzez to wejście podaje się napięcie zasilania do sondy pomiarowej lub przewodu pomiarowego w przypadku pomiaru elementów aktywnych.
- **12. Kanał R.** Pozwala na dołączenie do analizatora zewnętrznego źródła sygnału określonej częstotliwości.
- **13. Napęd dysków elastycznych 3,5**". Umożliwia zapisywanie i odtwarzanie wyników pomiarów oraz stanu analizatora

Do wykonania

Kalibracja analizatora dla układów dołączanych za pomocą standardu BNC i pomiar obciążenia dołączonego do portu 1 analizatora w określonym zakresie częstotliwości.

Procedura pomiarowa

Uwaga: opisy klawiszy funkcyjnych zaznaczono pogrubioną czcionką, np. **START,** natomiast kursywą zaznaczono opcje pojawiające się na ekranie analizatora np. **CAL KIT**, dostępne po wciśnięciu odpowiadającego im klawisza znajdującego się obok ekranu.

- 1. Włącz analizator.
- 2. Do portu 1 dołącz poprzez kabel pomiarowy i odpowiednie przejścia (z typu 7mm na N i z typu N na BNC) obciążenie.
- 3. Wybierz zakres częstotliwości: częstotliwość dolną 100 kHz wciskając

START 100 k/m

4. oraz częstotliwość górną 1 GHz wciskając

STOP 1 G/n

- 5. Dokonaj kalibracji analizatora dla układów dołączanych za pomocą standardu BNC: wciśnij **CAL**
- 6. W celu wyboru rodzaju kalibracji wciśnij

CALIBRATE MENU S11 1-PORT

7. Dołącz do kabla pomiarowego (poprzez odpowiednie przejścia) wzorzec rozwarcia w standardzie BNC, następnie wciśnij

OPEN

8. Dołącz do kabla pomiarowego (poprzez odpowiednie przejścia) wzorzec zwarcia w standardzie BNC, następnie wciśnij

SHORT

 Dołącz do kabla pomiarowego (poprzez odpowiednie przejście) obciążenie dopasowane impedancyjne (50Ω) w standardzie BNC, następnie wciśnij

LOAD

10.W celu wyznaczenia współczynników korekcji wciśnij

DONE: PORT-1 CAL

11.Zapisz wyniki kalibracji na 3,5" dyskietce wybierając kolejno:

SAVE/RECAL SELECT DISK

INTERNAL DISK

SAVE/RECAL SAVE STATE

Po dokonaniu kalibracji analizator jest przygotowany do wykonywania pomiarów w zadanym zakresie częstotliwości. Procedura kalibracji uwzględnia wpływ wewnętrznych połączeń analizatora, kabla pomiarowego i odpowiedniego przejścia (ze standardu typu N na BNC). Wyniki pomiarów będą prawidłowe w przypadku dołączenia układu pomiarowego poprzez złącze BNC. W przypadku zastosowania innego standardu połączenia układu pomiarowego lub dołączenie tego układu bezpośrednio do analizatora (bez pośrednictwo kabla pomiarowego), procedurę kalibracji należy powtórzyć.

12. Wybierz pomiar parametru S11 (współczynnik odbicia) wciskając

MEAS Refl : FWD S11

13.W celu wyświetlenia wyniku wciśnij

SCALE REF AUTOSCALE

14.Dokonaj ponownie kalibracji opisanej w punktach 5-10 używając innych wzorców zwarcia i przerwy oraz łącząc je poprzez dodatkowe przejście (BNC na BNC). Powtórz pomiar wartości parametru S₁₁ (punkty 12-13) po kalibracji dla obciążenia użytego poprzednio.

15.Do kabla pomiarowego i odpowiednich przejść (z typu 7mm na N i z typu N na BNC) dołącz kabel koncentryczny zakończony złączem BNC. Dokonaj kalibracji układu pomiarowego, poprzez dołączenie do końca kabla wzorców zwarcia, przerwy oraz obciążenia dopasowującego. Następnie pomierz parametr S₁₁ dla użytego poprzednio obciążenia.

W sprawozdaniu należy

zamieścić wyniki otrzymanych pomiarów (w postaci wykresów), omówić różnice pomiędzy nimi oraz uzasadnić potrzebę dokonywania kalibracji analizatora dla różnych warunków pomiarowych.